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Abstract 

Laser polishing of metals is a multi-step process requiring detailed and individual parameter optimization for each processing step. The 
experimental approach to parameter optimization for new materials and initial surface roughness is not optimized itself. Therefore, high 
numbers of experiments are necessary. Furthermore, established approaches neglect that laser polishing is a multi-step process, resulting 
in redundant experimentation and suboptimal roughness. In this work, a new approach for optimizing and benchmarking the parameter 
optimization process is developed. This approach is based on a surrogate model using a dataset of 2,560 conducted experiments on laser 
polishing of AISI H11. By using the surrogate model, efficient and low-cost optimization and comparison of parameter optimization 
strategies are enabled. In the benchmark, a wide range of conditions, such as sample limitation and target roughness, were tested. As a 
result, the domain-based approach could find parameters meeting the criteria in less than 50 experiments even for a suboptimal choice 
of initial process parameterization fed to the algorithm. 
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1. Introduction 

As of now, mechanical polishing represents the state of the art in the final processing of components for the aerospace 
and automotive industries, medical technology, and tool and mold making, among others. A primary objective of polishing 
is to reduce the initial roughness. Complex 3D geometries are often polished manually in an expensive and lengthy process. 
[Zeng et al., 2023; Gisario et al., 2022]  

Laser polishing of metals (LPM) is an automated alternative to mechanical polishing methods. The remelting of a thin 
surface layer during LPM allows for the mitigation of the workpiece's initial roughness, where the redistribution of the 
material in the molten state and subsequent smoothing of the surface are attributed to interfacial tension. In this work the 
LPM process known as macro-polishing is focused, which utilizes continuous laser radiation. Macro-polishing typically uses 
laser beam diameters from 100 µm up to 600 µm and in return reduces surface structures of higher structural wavelength 
range 𝜆𝑠. This approach stands in contrast to the process of micro-polishing, which utilizes pulsed laser radiation using 
smaller laser beam diameters (25 - 100 µm). Micro-polishing mitigates surface structures with structural wavelengths 𝜆𝑠 
below 100 µm. Consequently, micro-polishing has been demonstrated to enhance the gloss level of the processed surface. 
According to the state of art, LPM is a multi-stage process, thus two macro-polishing steps with refining process parameters 
are necessary to achieve lowest surface roughness. An optional micro-polishing step may also be incorporated. [Willenborg, 
2005; Temmler et al., 2020; Kiedrowski, 2009] 

For macro-polishing, the laser beam is directed in a meandering pattern across the surface using a laser scanner. In the 
context of macro-polishing, the reduction in initial roughness is found to be significantly influenced by the following process 
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parameter dimensions, which are the focal point of this study: laser beam diameter 𝑑𝐿, laser power 𝑃𝐿 , scanning speed 𝑣𝑠, 
track offset 𝑑𝑦, number of passes 𝑛, and processing direction α. A combination of these process parameter dimensions is 
recorded as a process parameter set. It should be noted that the variation of other process parameter dimensions, such as 
the selection of inert gas utilized to prevent oxidation of the surface (e.g. Ar, He, N), is not being taken into consideration in 
this work. LPM is shown schematically in Figure 1 alongside investigated parameter dimensions. [Temmler et al., 2020; 
Kumstel, 2021] 

While LPM facilitates the automated processing of complex 3D geometries, its application is constrained by achievable 
reduction in initial roughness, potentially induced waviness and extended processing times. Due to the non-linear thermo-
physical interaction between process, laser and material, extensive process parameter development (PPD) is conducted to 
find suitable candidates of process parameters among local optima (referred to as LPM-PPD hereafter). The LPM process is 
dependent on the material and initial surface roughness, the parameterization of laser and scanner and the workpiece’s 
geometry. Depending on prior experimental findings and knowledge on LPM of given material and subsequent conditions, 
referred to as domain knowledge hereafter, between 100 to 300 experiments are found to determine suitable process 
parameter sets. This results in a significant investment of time and costs. [Willenborg, 2005; Temmler et al., 2020] 

To help reduce the number of redundantly tested process parameter sets, LPM-PPD must increase efficiency. Efficiency 
is measured by the number of process parameter sets evaluated or the duration of LPM-PPD measured as time. Effectiveness 
describes the attribute of LPM-PPD being able to find a process parameter set suitable for the objective at hand. Aiming at 
an increase in efficiency and effectiveness, different LPM-PPD strategies are developed and employed. These strategies are 
built upon one or a combination of these three components, depending on the financial resources and time available: 
domain knowledge, design of experiments (DOE), and physical or data-based modeling.  

The central objective is to demonstrate that domain knowledge improves reducing the number of experimental 
investigations whilst being able to search within greater number of process parameter dimensions than in purely statistical 
analyses. An implementation of an LPM-PPD strategy with DOE and use of domain knowledge is developed. The approach is 
compared to purely statistical DOE methods in a benchmark.  

However, in the context of experimental investigations, a benchmark of process parameter development strategies 
entails a substantial investment of time and financial resources, particularly given the iterative nature of the comparison of 
the examined strategies and number of process parameter sets. To address this, costly real-world experiments will be 
replaced by a surrogate model serving as an approximate substitute. The results predicted by the surrogate model can then 
be used to benchmark LPM-PPD strategies, enabling efficient and low-cost, albeit approximate, comparison and 
optimization. The model error will be analysed to assess the reliability of the strategy comparison. Within a benchmark 
effectiveness and efficiency of the strategies will be evaluated. This allows for the selection of an optimal LPM-PPD strategy 
among the benchmarked candidates.  An outcome of this work is a standardized, domain-knowledge-driven strategy for 
LPM-PPD that can be applied to future process parameter development efforts. 

Figure 1: LPM using continuous wave laser radiation and process parameter dimensions considered in this work. [Willenborg, 2005] 
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1.1. Surrogate modelling for design space optimization 

Surrogate modeling, or metamodeling, refers to the construction of data-driven approximations that emulate the 
behavior of complex simulations or physical systems, often built using empirical function approximation techniques [Wang, 
2007]. These models reduce computational cost while maintaining sufficient accuracy, making them valuable for scenarios 
involving expensive or time-consuming evaluations [Simpson, 2001; Forrester et al., 2008]. Surrogates support parallel data 
generation, filter out numerical noise, and offer global approximations useful for sensitivity analysis and design exploration. 
However, they involve trade-offs in accuracy, especially if the input space is poorly covered, which can lead to misleading 
conclusions about system behavior. 

Polynomial regression offers a simple and interpretable approximation, suitable for smooth problems but often limited 
in capturing complex nonlinearities [Bhosekar and Ierapetritou, 2018]. Regression trees partition the input space to model 
local behavior effectively and handle variable interactions, though they may produce discontinuous outputs and risk 
overfitting [Mišić, 2020]. Neural networks provide high flexibility and can approximate highly nonlinear functions, including 
multi-output cases, but require tuning to avoid overfitting and can be challenging to embed within optimization frameworks 
[Fischetti and Jo, 2018; Grimstad and Andersson, 2019]. Gaussian processes are probabilistic models that deliver both 
predictions and uncertainty estimates, making them ideal for small datasets and robust optimization, though their scalability 
is limited in high-dimensional or data-rich settings [Bertsimas et al., 2010; Wilson et al., 2020]. Each surrogate type involves 
trade-offs between model complexity, interpretability, scalability, and integration into optimization workflows. 

Surrogate-based optimization strategies are traditionally framed within either the surrogate-led or mathematical 
programming-led perspectives [Bhosekar and Ierapetritou, 2018; McBride and Sundmacher, 2019; Misener and Biegler, 
2023]. The former selects a surrogate model based on system properties, while the latter chooses a model to meet 
optimization constraints such as linearity or convexity. However, in this work, the design space of LPM-PPD is precisely 
defined and limited. Therefore, deviation from both traditional approaches is possible. The primary purpose of the surrogate 
model is to emulate the real process in a full LPM-PPD loop across multiple LPM-PPD strategies, enabling systematic 
benchmarking of strategy performance. The objective is to identify the most effective LPM-PPD for the specific setting at 
hand. Rather than high accuracy of the surrogate’s optimum solely within the true process optimum, high accuracy across 
the entire design space is required. This is critical due to multiple iterations of LPM-PPD evaluating different process 
parameter sets. If the surrogate model error is large in regions outside the optimum, the surrogate model may mislead the 
LPM-PPD strategy and compromise the evaluation. Therefore, the selection of a surrogate model with low global predictive 
error is the focus of this work, ensuring that iterative evaluations remain trustworthy throughout LPM-PPD. 

1.2. Process parameter development for laser polishing of metals 

Domain knowledge in LPM-PPD can be used for limiting the examined process parameter space, choosing a starting point 
for PPD and interpreting results during PPD in the search of a global optimum. As a key novelty of this work, domain 
knowledge can further be leveraged to examine process parameter dimensions independently by defining a sequential 
variation approach. This sequence ensures that the determined properties of remelting of the thin surface layer are not 
influenced in subsequent variation of process parameter dimensions. [Willenborg, 2005; Kiedrowski, 2009; Kumstel 2021] 

In contrast to the sequential variation approach, state-of-the-art LPM-PPD strategies typically employ DOE techniques 
that vary multiple process parameter dimensions simultaneously. To reduce the scope of experimental investigations, 
process parameter sets are selected on a statistical basis. The individual influence of the process parameter dimensions is 
only given a subordinate role. However, a uniform DoE is not consistently applied across all cases. A variety of methodologies 
are employed, with the most prevalent being a full factorial combination and a 2k-factorial design. [Ukar et al., 2008; Kumar 
et al., 2025; Solheid et al., 2020; Rosa et al., 2014; Meylan et al., 2022] 

Physical modeling reduces the scope of LPM-PPD through approximative simulations. Often, this involves approximating 
a heat conduction equation to simulate the dynamics of the melt pool. However, this approach is often limited to a subset 
of parameter dimensions as restricted by physics. For example, melt pool temperature is simulated through variation of 𝑃𝐿  
and 𝑣𝑠. Also, these simulations require considerable time and computing power, and their accuracy depends on how well 
the physics are modelled and the conditioning of simulation matches the real-world conditions (material, initial roughness, 
etc.). [Ukar et al., 2012; Solheid et al., 2022; Meylan et al., 2022; Pham et al., 2024] 

The utilization of DOE has emerged as the predominant LPM-PPD strategy. The integration of domain knowledge into 
LPM-PPD is frequently disregarded and its sole purpose often is to identify a starting process parameter set for DOE. In most 
cases, the scope of experimental investigations is severely limited by varying only a few process parameter dimensions, 
selecting a small number of process parameter sets (usually fewer than 50, often 10 to 20) or using only few iterations 𝑖 
during LPM-PPD with 𝑖 = 1 being the most common. [Gisario et al., 2022; Temmler et al., 2020] 
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2. Method 

2.1. Domain-knowledge driven data set for LPM of AISI H11 

To create the surrogate model for LPM, a data set is compiled based on extensive real-world experiments on LPM of AISI 
H11 chosen in accordance with the detailed investigations of E. Willenborg and T. Kiedrowski. The process parameter sets 
determined for the data set contain both optimal and suboptimal process parameters for LPM of AISI H11 to examine the 
whole process parameter space. 

The experimental investigation is conducted on 20 discs of AISI H11 (diameter of 162 mm, thickness of 20 mm). Up to 147 
process parameter sets per disc with field size of 10 mm x 10 mm are processed in rings of increasing radii. LPM is conducted 
using argon as inert gas. Residual oxygen content was measured and is held at 1,000 ppm by use of a control system. Prior 
to LPM the discs are processed by turning with a groove distance of 200 µm. Therefore, the dominant influence on the initial 
roughness refers to the primary roughness wavelength 𝜆𝑠 = 200 µm. A low variance of initial roughness throughout the 20 
discs is ensured by cutting all discs from a single round blank and consistent turning parameters. A photography of an AISI 
H11 disc with several samples is shown in Figure 2 (a). 

The investigated parameter space is divided into discrete levels which are combined full-factorially. Table 1 gives an 
overview of the calculation for the process parameter space, where rules are to be applied sequentially from the topmost 
parameter in the table to the bottommost and combined full-factorially. This results in a total of 2,560 unique process 
parameter sets. The levels of subsequent process parameter dimensions are derived from 𝑑𝐿 = 250 µm. If the laser beam 
diameter differs, levels for subsequent dimensions must be adapted based on the formulas shown in the comment column. 
The choice of process parameter range and levels is explained in the following list: 

Table 1. Process parameters and rules to calculate parameter space for full-factorial combination with 𝑑𝐿= 250 µm being the default laser beam diameter 

on which the ranges of subsequent process parameters have been applied to. 

Process parameter Symbol Unit Range Levels Comment 

Laser beam diameter 𝑑𝐿 µm [100, 150, 250, 400, 600] 5 Approximately 150-160% between levels 

Laser power 𝑃𝐿 Watt [50, 60 74, 90 ,110, 134, 164, 200] × 𝑓𝑑𝐿
 8 𝑓𝑑𝐿

≔  
𝑑𝐿

250
 , 𝑃𝐿𝑏𝑎𝑠𝑒

≔
𝑑𝐿

2.5
, 𝑃𝐿 ≤ 500 Watt 

Scan velocity 
𝑣𝑠 mm/s [25, 35, 49, 70, 99, 140, 198, 279] × 𝑓𝑃𝐿

 8 
𝑓𝑃𝐿

≔
𝑃𝐿

𝑃𝐿𝑏𝑎𝑠𝑒

 , 

𝑣𝑠 ≥ 25 mm/s 

Track offset 𝑑𝑦 µm [0.1, 0.2, 0.4] × 𝑑𝐿 3 Empirical value often at 0.25 

Number of passes 𝑛 - [1,2,4] 3  

 
• Starting with the laser beam diameter, five levels are selected for 𝑑𝐿. Initially, 𝑑𝐿 = [250, 400] µm are examined as these 

values are close to the suggested domain-knowledge driven value 𝑑𝐿 ≥ 200 µm. Furthermore, an increase to 
𝑑𝐿 = 600 µm is examined at which a substantial increase in waviness is anticipated resulting in potentially more 
suboptimal values. Additionally, the data set entails values of 𝑑𝐿 = [100, 150] µm at which incomplete remelting of the 
dominant surface structure is expected, attributed to insufficient width of the melt pool.  

• 𝑃𝐿  is adjusted in eight levels corresponding to 𝑑𝐿. According to the process parameters established by T. Kiedrowski, 
𝑃𝐿  = 100 W is utilized as the baseline for 𝑑𝐿 = 250 µm. Starting from this baseline, 𝑃𝐿  is adapted linearly to changes in 𝑑𝐿. 
Within the parameter space of the individual 𝑑𝐿, 𝑃𝐿  is systematically varied in increments of 1.22. This allows for detailed 
examination of the resulting parameter spaces. Low values of 𝑃𝐿  are examined to detect insufficient remelting of the thin 
surface layer, while high values of 𝑃𝐿  result in overmelt and further carbonization of the surface.  

• 𝑣𝑠 is varied in eight levels. The selection of levels is based on 𝑃𝐿. The lower limit is set 𝑣𝑠 = 25 mm/s to limit the increase 
in processing time. 

• 𝑑𝑦 subject to identical variation across all parameter spaces in range of [0.1, 0.2, 0.4], independent of the preceding 
process parameters. The levels of 𝑑𝑦 = [0.1, 0.2] × 𝑑𝐿 are adopted from domain knowledge to achieve a substantial 
reduction in initial roughness. Furthermore, the investigation encompasses 𝑑𝑦 = 0.4 × 𝑑𝐿, aiming to decrease processing 
time whilst ensuring sufficient roughness reduction. 

• Lastly, the variation of 𝑛 = [1, 2, 4] is examined. According to domain knowledge, increasing 𝑛 results in a further 
reduction of the initial roughness. In contrast, 𝑛 = 1 is examined to include a minimal processing time. 

 
During experiments with 𝑑𝐿 = [250, 400, 600] µm a redPower QUBE 500 fiber laser by SPI Lasers UK Ltd (max. laser power 

of 𝑃𝐿,𝑚𝑎𝑥  = 500 W, laser wavelength of 𝜆 = 1064 nm) is used. LPM with these smaller 𝑑𝐿 = [100, 150] µm is processed utilizing 
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a YLPN 200-R fiber laser by IPG Photonics Corporation (𝑃𝐿,𝑚𝑎𝑥  = 200 W, 𝜆 = 1080 nm). The individual adjustment of 𝑑𝐿 is 
achieved through a proprietary optomechanical setup, which is described in detail by A. Temmler in [Temmler et al., 2020] 
In this configuration, a zoom telescope is employed along the beam path, preceding the deflection of laser radiation through 
a HurryScan 30 by SCANLAB GmbH. 

The measurement results stored in the data set are obtained by measuring the surface profile of the samples using a 
white light interferometer (WLI) NX2 from AMETEK Germany GmbH, BU Zygo. The measurements are obtained at 
magnifications of 1.4x, 2.5x, 10x, and 50x. An example of surface profiles recorded using WLI at 2.5x magnification is shown 
in Figure 2(b) and (c) comparing initial roughness to roughness after LPM with respective Sa value. 

To assess the reduction in initial roughness, the surface roughness value Sa is calculated as the mean arithmetic height 
from the measurement of the surface profile in accordance with DIN EN ISO 25178 [DIN EN ISO 25718, 2016]: 

𝑆𝑎 =
1

𝐴
∬ |𝑧(𝑥, 𝑦)|𝑑𝑥𝑑𝑦

𝐴

, [𝑆𝑎] = 𝜇𝑚 (1) 

Additionally, the data set provides the short-, medium-, and long-wave proportions of the surface profile via filtered Sa 
values. These are generated by applying a low-pass filter or a band-stop filter to the WLI measurement data. In the process, 
the cut-off wavelength 𝜆𝑐  of the filter is selected in accordance with DIN EN ISO 21920-3 [DIN EN ISO 21930-3, 2022]. The 
designations of the filtered Sa values and corresponding 𝜆𝑐  are enumerated in Table 2. In this study, the surface profile is 
examined using the Sa-SL value to mitigate the impact of shape deviations on the surface of the samples. Sa-SL encompasses 
both the roughness and the waviness of the surface. In instances where the surface profile of a specimen is evaluated based 
on its waviness, the Sa-L value is employed as a metric. Finally, the short-wave roughness is specified in relation to the 
reduction in the initial roughness as Sa-S. The mean values for initial roughness and initial waviness of the samples before 
LPM are Sa-S = 1.57 µm and Sa-L = 0.1 µm. 

Table 2. Filtered Sa-values with associated cut-off wavelengths to assess different proportions of the surface profile. 

Designation 𝝀𝒄 in µm Filter type Considered proportion of the surface profile Mean values in data set before LPM in µm 

Sa-S (Short) [2.5, 800] band-pass roughness 1.57 

Sa-L (Long) [800, 2500] band-pass waviness 0.1 

Sa-SL 2500 low-pass roughness and waviness 1.6 

 

2.2. Machine learning methodology for surrogate model 

To construct a robust and generalizable surrogate model using a multi-layer perceptron (MLP), a comprehensive machine 
learning workflow was implemented. This workflow incorporates best practices in data preprocessing, model architecture 
design, training, validation, and performance evaluation, with the goal of minimizing overfitting and maximizing predictive 
accuracy. In addition to the MLP, alternative modeling approaches, including polynomial regression, kernel-based methods, 
and Gaussian processes, were also explored. However, these alternatives demonstrated inferior performance. The workflow 
begins with data preprocessing, where input and output features are selected and scaled using a custom standard scaler. 

Figure 2: (a) Image showing multiple samples of LP on an AISI H11 disc. (b) Surface profile before and (c) after processing by LPM recorded with WLI. 
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The data set described above is then split into three parts: 70% for training (1792 data points), 15% for validation, and 15% 
for testing (384 data points each). The workflow is implemented in Python 3.13 using PyTorch and numpy. 

A hyperparameter optimization is conducted via grid search. A variety of architectural and training parameters are 
explored, including hidden layer count, hidden units, learning rate, dropout rate, and weight decay. Each configuration is 
evaluated across consistent train/validation splits, and the best set of parameters is identified based on validation root-mean 
squared error (RMSE). To prevent overfitting during training, early stopping and learning rate scheduling are employed. 
Dropout layers are inserted between dense layers as a form of regularization, reducing neuron co-dependence. Weight decay 
(L2 regularization) further discourages overfitting by penalizing large weights. 

A grid search was conducted across 576 hyperparameter configurations. The final model, chosen based on lowest 
validation RMSE, demonstrated strong generalization on the test set with MSE = 0.027 µm², RMSE = 0.164, and MAE = 0.087. 
The chosen hyperparameters are shown in Table 3. The dropout rate did not improve the model and is removed from the 
table. 

Table 3. Hyperparameters chosen for multi-layer perceptron. 

Hyperparameter Hidden layers Hidden units Activation Function Learning rate Max epochs Weight decay 

Value 5 100 ReLu 0.001 500 0.0001 

 
In the following analysis of the model performance, the relative model error 𝜖𝑟𝑒𝑙is used as it quantifies the error 

independently of the true absolute values. This allows for a consistent and comparable assessment of model performance 
across the entire range of predicted Sa values. In this regard, (𝑥i, yi) is the process parameter set and response of the real-
world experiment whereas yi

∗ is the model prediction for 𝑥i: 

𝜖𝑟𝑒𝑙 =
𝑎𝑏𝑠(𝑦𝑖 − 𝑦𝑖

∗)

𝑦𝑖

⋅ 100 , [𝜖𝑟𝑒𝑙] = % (2) 

Table 4 summarizes key statistical metrics of the relative model error across different laser beam diameters, including 
mean, standard deviation, median, and extreme values. In several parameter regimes, the median error is notably lower 
than the mean, for example, at 𝑑𝐿 = 150 µm, the mean error is 21.02%, whereas the median is only 10.98%. This discrepancy 
indicates a positively skewed error distribution, where a small number of large deviations inflate the mean. Similar trends 
are observed for 𝑑𝐿 = 250 µm and 𝑑𝐿 = 600 µm, suggesting that most predictions are relatively accurate, with a few outliers 
contributing disproportionately to the overall error. 𝑑𝐿 = 400 µm, while showing the highest standard deviation (42.84%), 
also exhibits a low median error (6.34%), reinforcing this observation. These findings suggest that the surrogate model 
delivers robust and generally accurate predictions across most of the parameter space, with large errors being rare and 
identifiable.  

Table 4. Statistics on relative model error in percent grouped by the laser beam diameter and overall mean value for each statistic. 

Laser beam 
diameter in µm 

Mean relative 
error in % 

Standard deviation 
relative error in % 

Median of relative 
error in % 

Minimal relative  
error in % 

Maximal relative 
error in % 

100 8.97 11.79 7.52 0.01 45.45 

150 21.02 7.65 10.98 0.41 266.94 

250 16.65 17.57 11.87 0.43 94.96 

400 10.92 42.84 6.34 0.19 54.37 

600 14.36 18.89 9.89 0.05 124.92 

Mean (All) 14.39 19.75 9.32 0.22 117.38 

 
Figure 3 and Figure 4 visualize the multi-layer perceptron’s surface roughness predictions Sa-S and corresponding relative 

model errors 𝜖𝑟𝑒𝑙 across the process parameter space defined by laser power 𝑃𝐿  and scan speed 𝑣𝑠. This process parameter 
space is shown separately for two selected laser beam diameters (𝑑𝐿 = 250 µm and 𝑑𝐿 = 600 µm) with constant values of 
𝑑𝑦 = 0.2 × 𝑑𝐿 and 𝑛 = 2. Warmer colors indicate higher predicted surface roughness, while cooler colors correspond to 
smoother surfaces and for model error analogous. The roughness maps (left panels) show a consistent trend where 
increased laser power and decreased scan speed result in smoother surfaces, with a clear threshold for laser power 𝑃𝐿  to 
access regions of low roughness. This threshold shifts upward with increasing 𝑑𝐿, consistent with domain expectations.  
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The error maps (right panels), capped between values of 0% and 100%, show that most predictions lie within a relative 
error of 0–30%, with higher errors occurring in under-sampled or highly nonlinear regions. Training and test data overlay 
demonstrates that the model error is decreased in highly sampled regions, while sparse regions contribute 
disproportionately to higher errors. 

These visualizations confirm the surrogate model’s reliable interpolation performance and identify areas for potential 
refinement through targeted data augmentation. For example, at 𝑑𝐿 = 600μm, two extreme points of high model error are 
observed in the region of low to medium laser power and low to medium scan speed, corresponding to an area of high non-
linearity in the model’s predicted roughness response. 

Given the inherent approximations involved in surrogate modeling, such skewed but bounded error behavior is 
acceptable, particularly when the model is used for tasks such as design exploration, sensitivity analysis, or optimization. 
Overall, the results (Median relative model error = 9.32 %) support the model’s usability as a computationally efficient 
surrogate, capable of providing reliable estimates while enabling uncertainty-aware decision-making. It should be noted that 
the final determined process parameter set should be verified by real experiments. 

Figure 3: (Left) Heat map of Sa values for 𝑃𝐿 and 𝑣𝑠 predicted by surrogate model for  𝑑𝐿 = 250 µm, 𝑑𝑦 = 50 µm, 𝑛 = 2.  

(Right) Heat map of relative model error 𝜖𝑟𝑒𝑙  for  𝑑𝐿 = 250 µm, 𝑑𝑦 = 50 µm, 𝑛 = 2 computed for test and training data. Relative model error is capped 
between [0, 100]. 
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Figure 4: (Left) Heat map of Sa values for 𝑃𝐿 and 𝑣𝑠 predicted by surrogate model for  𝑑𝐿 = 600 µm, 𝑑𝑦 = 120 µm, 𝑛 = 2.  

(Right) Heat map of relative model error 𝜖𝑟𝑒𝑙  for  𝑑𝐿 = 600 µm, 𝑑𝑦 = 120 µm, 𝑛 = 2 computed for test and training data. Relative model error is capped 

between [0, 100]. 
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2.3. Domain knowledge on the variation of process parameters in LPM 

In the work of E. Willenborg, extensive LPM-PPD based on domain knowledge and individual variation of process 
parameter dimensions is conducted. The experimental investigations are carried out on samples of AISI H11 that are 
prepared by turning. A wide range of process parameter sets is investigated, without constraining a narrow parameter space 
beforehand. The minimal surface roughness that can be achieved by LPM of AISI H11 is influenced by the quality of the 
workpiece. Adding to the methodology of E. Willenborg, T. Kiedrowski investigates the formation of surface structures 
depending on process parameters during LPM and their subsequent elimination. A surface roughness of Ra = 0.05–0.1 µm 
is achieved. The process parameter set determined in this study is listed in Table 1. [Willenborg, 2005; Kiedrowski, 2009] 

Table 5. Process parameter set determined by T. Kiedrowski for LPM of AISI H11 for reduction in initial roughness in relation to turning grooves with 

distance of 200 µm. [Kiedrowski, 2009] 

𝒅𝑳 in µm 𝑷𝑳 in W 𝒗𝒔 in mm/s 𝒅𝒚 in µm 𝒏 

240 100 110 60 10 

 
Based on E. Willenborg and T. Kiedrowski, the following rules for determining the process parameter dimensions 

separately are recorded as domain knowledge: 
• The processing direction 𝜶 is set perpendicular to the dominant surface structure from previous processing steps (e.g. 

turning grooves). To ensure the homogeneous redistribution of the material and the elimination of directional surface 
structures, α is rotated by 90° between passes. 

• Increases in the beam diameter 𝒅𝑳 result in wider melt pools. Therefore, 𝑑𝐿 is chosen depending on 𝜆𝑠 of the primary 
surface structure: 

𝑑𝐿 ≥ 𝜆𝑠  (3) 

However, an increase in 𝑑𝐿 should be limited to prevent an increase in waviness. 
• Increasing the laser power 𝑷𝑳 results in an increase in melt volume, thereby enhancing the reduction in the initial 

roughness. It is essential that 𝑃𝐿  be sufficiently high so that a stable melt pool with minimal fluctuations in the melt 
volume can be achieved. The upper limit of 𝑃𝐿  is constrained to prevent decarburization of the thin surface layer and 
vaporization of the material. 𝑃𝐿  is adjusted proportionally to a change in 𝑑𝐿 to keep the irradiance (approximatively) 
constant. 

• Similarly, a reduction in the scanning speed 𝒗𝒔 corresponds to higher energy density and thus an increase in melt volume. 
The reduction in 𝑣𝑠 is limited by the evaporation temperature. The economic viability of LPM is another lower limit.  

• A further reduction in the initial roughness is attributed to the process of repeated local remelting. This is realized through 
a decrease of the track offset 𝒅𝒚, which is limited by the increase in processing time and economic viability of LPM. 
According to the works of E. Willenborg and T. Kiedrowski, 𝑑𝑦 is determined as 10%, 20% or 25% of 𝑑𝐿. To ensure that 
individual tracks overlap, 𝑑𝑦 < 𝑑𝐿 is set. 𝑑𝑦 is adjusted proportionally when 𝑑𝐿 is changed, if other process parameters 
remain constant. 

• Additionally, repeated local remelting is achieved by an increase in number of passes 𝒏. E. Willenborg states that the 
lower limit should be set at 𝑛 = 2. The upper limit of n is determined by balancing economic viability of LPM with 
roughness reduction. 
 
Using the sequence listed above (𝑑𝐿 → {𝑃𝐿 , 𝑣𝑆} → {𝑑𝑦, 𝑛}), process parameter dimensions can be investigated 

sequentially with only a subset being varied. In this regard, the investigation of a process parameter dimension does not 
significantly influence process parameter dimensions prior in the sequence. The properties of the remelting of the thin 
surface layer which are adjusted by the process parameter dimensions are listed below as described by [Willenborg, 2005; 
Kiedrowski, 2009]: 
• To ensure the remelting of the dominant surface structures, it is necessary to establish the process parameter dimensions 

that determine melt pool width and melt volume first. Therefore, 𝑑𝐿 is set as the first process parameter dimension and 
chosen in accordance with the structural wavelength 𝜆𝑠 of the initial surface.  

• The melt volume is adjusted through 𝑃𝐿  and 𝑣𝑠. First, the process parameter dimension of 𝑃𝐿  and 𝑣𝑠 for the determined 
𝑑𝐿 is searched with a “rough” variation and large distances between varied process parameter sets. Then, a “fine” 
variation with smaller distances is performed around the local optimum determined for the reduction in initial roughness. 

• 𝑑𝑦 is calculated based on 𝑑𝐿. The value is chosen in descending order from [0.1, 0.2, 0.4] × 𝑑𝐿 
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• 𝑛 is varied by doubling its current value. 
• Lastly, a decrease of 𝑑𝐿 is investigated to attain a similar reduction in roughness with even smaller 𝑑𝐿, avoiding an increase 

in waviness. 
 

2.4. LPM-PPD based on domain knowledge 

At the beginning of the LPM-PPD process, a starting parameter set is selected based on domain knowledge and the 
material properties being considered. Process parameter dimensions are then systematically and sequentially explored. 
During the variation of selected process parameter dimensions all other process parameter dimensions are kept constant. 
The attainment of a reduction in initial roughness is evaluated in relation to both excessive energy input and inadequate 
processing times. LPM-PPD based on domain knowledge follows the following rule set:  
• In instances where the maximum number of allowable process parameter sets (e.g. restricted number of samples) has 

not yet been reached, a batch of process parameter sets is generated by full factorial combination of process parameter 
dimensions.  

• If evaluated process parameter sets from prior variations are available, process parameter sets from the new batch are 
filtered. Filtering of new values in process parameter dimensions 𝑞𝑛𝑒𝑤  is conducted based on examined values 𝑞𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑑  
and respective individual threshold 𝑡 by:  

|𝑞𝑛𝑒𝑤 − 𝑞𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑑| ≥ 𝑡 ⋅ 𝑞𝑒𝑥𝑎𝑚𝑖𝑛𝑒𝑑  (1) 

• Subsequently, the batch of process parameter sets is investigated. The current best process parameter set of the batch 
is then identified – typically the one that achieves the lowest surface roughness. If this variation phase is effective, the 
LPM-PPD moves on to the next process parameter dimension. Otherwise, the current best process parameter set is 
adjusted and reused to refine the current process parameter dimension further. 

• If the exploration of the current process parameter dimension reaches the predefined maximum number of allowable 
process parameter sets, further variations are limited by excluding less promising options. Specifically, process parameter 
sets with the greatest deviation from the current best process parameter set are removed. If the number of process 
parameter sets is still too high, further exploration of that process parameter dimension is stopped. 
 
Depending on which process parameter dimension is investigated, different aspects of the surface profile are emphasized 

during selection of the current best process parameter set:  
• In the “rough” variation of 𝑃𝐿  and 𝑣𝑠 the influence of LPM on surface roughness and waviness is considered.  
• During the subsequent “fine” variation of 𝑃𝐿  and 𝑣𝑠, among all process parameter sets that meet the target roughness, 

the one with the lowest waviness is chosen as the current best. This helps counteract the tendency of LPM to introduce 
new surface structures that increase waviness.  

• In subsequent variations of 𝑑𝑦 and 𝑛 as well as the decrease of 𝑑𝐿 only the roughness is considered. 
 
The underlying iterative and sequential process used in the LPM-PDD strategy based on domain knowledge is shown 
schematically using a flowchart in Figure 5.  
It shall be noted that the complete strategy can be recreated applying the listed rule set into the flowchart with 𝑑𝐿 as the 
first process parameter to be varied, then {𝑃𝐿 , 𝑣𝑠}, then 𝑑𝑦 and lastly 𝑛. 

Figure 5: Flowchart giving an overview of the iterative and sequential LMP-PPD strategy based on domain knowledge. 
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3. Benchmarking process parameter development strategies using a surrogate model 

For the evaluation and comparison of LPM-PPD strategies, a benchmark framework is developed. Figure 6 illustrates the 
structure, which enables systematic benchmarking. The benchmark framework integrates digitized LPM-PPD strategies, 
which propose process parameters, with a surrogate model that forecasts corresponding process results. These results are 
assessed against predefined performance targets such as surface roughness, processing time, personnel time, and material 
cost. The benchmark framework allows the incorporation of boundary conditions, including limits on process parameter 
ranges, processing time, or the number of allowable real experiments. By simulating multiple LPM-PPD runs for each 
strategy, the benchmark framework supports a comparative analysis of effectiveness and efficiency under varying 
constraints. In this context, the surrogate model replaces the need for costly or time-intensive real-world experiments, 
enabling robust strategy evaluation and ultimately facilitating the standardization and selection of suitable LPM-PPD 
strategies. Moreover, it allows for strategy hyperparameter tuning such as the number of process parameter dimensions 
and levels in case of a DOE based strategy. Additionally, the number of run experiments and the cumulative cycle time of 
LPM-PPD 𝑡𝐶  are returned, where 𝑡𝐶  remarks the fictional machine and metrology time for the complete list of process 
parameter sets. 

𝑡𝐶  is composed of the processing time 𝑡𝑃 and the auxiliary time 𝑡𝐴 for each batch of process parameter sets. 𝑡𝑃 is 
calculated based on the process parameter dimensions 𝑣𝑠, 𝑑𝑦 and 𝑛 for a sample area of 10 mm × 10 mm. For 𝑡𝐴, a setup 
time of 30 min before LPM and 10 min before measuring the samples is calculated for each batch of process parameter sets 
with the number of parameter sets 𝐾. In addition, a measurement time of 45 s per process parameter set 𝑘 for WLI is 
recorded. 𝑡𝐶  is then accumulated across all batches. The calculation of 𝑡𝐶, 𝑡𝑃, and 𝑡𝐴 is performed as follows: 

𝑡𝐶 =  ∑
𝑡𝑃,𝑘

3600

𝐾

𝑘=1

 + 𝑡𝐴;  𝑡𝑃 =
10 𝑚𝑚

𝑣𝑠

∙
10 𝑚𝑚

0,001 ∙ 𝑑𝑦
∙ 𝑛; 𝑡𝐴 = 0,5 + 0,1667 + 0,0125 ∙ 𝐾; [𝑡𝑐 , 𝑡𝑁] = ℎ, [𝑡𝑃] = 𝑠 (4) 

Using the benchmark framework outlined above, the sequential variation LPM-PPD strategy based on domain knowledge 
is compared against the state of art DOE strategy. The latter refers to design space optimization using all process parameter 
dimensions simultaneously as is the most common strategy described in literature for LPM. The digitized LPM-PPD strategies 
are implemented using Python version 3.13. 

Two boundary conditions are set for benchmarking: a target roughness and a maximum number of experiments. To 
achieve a reduction in initial roughness suitable for most industry inquiries, Sa-S = 0.2 µm is defined as the target roughness. 
The maximum number of experiments is set at 50. This limits the effort required for the corresponding real experimental 
investigations to one person-day. Additionally, this aligns with the number of experiments that is most often used in 
literature employing DOE. 

First, the strategies are compared solely based on the minimal Sa-S values in relation to 𝑡𝐶  of the LPM-PPD. Then multi-
objective optimization is analyzed. To select the most suitable process parameter set, a weighted sum of the values of Sa-S, 
Sa-L and 𝑡𝑃 is calculated. The weights are recorded in the target vector and varied in the following steps: [(0.7, 0.15, 0.15); 
(0.5,0.25,0.25); (0.5,0.1,0.4)], where (0.7, 0.15, 0.15) refers to 70% weight to Sa-S, 15% weight to Sa-L and 15% weight to 𝑡𝑃. 

An algorithm is developed to digitize the LPM-PPD strategy based on domain knowledge for sequential variation. This 
algorithm includes the sequence of variation, the process parameter space, and the adjustment of the process parameter 
dimensions during successive iterations as described in section 2.4. The variation of individual process parameter dimensions 

                   

                  

               

                                             

                         

                

                                 
      

                                   
                      

              
          
          
          

 

Figure 6: Schematic representation of the benchmark framework with external boundary conditions and selection of the PPD strategy. 
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is executed within a loop until the respective target value is met. If this target cannot be met, the algorithm returns to a 
previously examined process parameter dimension. For example, 𝑑𝐿 is increased after an ineffective investigation of 𝑃𝐿  and 
𝑣𝑠 in a new iteration.  

For evaluation of the LPM-PPD strategy based on domain knowledge, a variation of the starting process parameter set is 
examined in separate runs of the sequential variation: 𝑑𝐿 = [100, 150, 250, 400, 600] µm with 𝑑𝑦 = 0.25 × 𝑑𝐿, and 𝑛 = 2. 𝑃𝐿  
and 𝑣𝑠 for the “rough” variation are then selected by the algorithm. In the “rough” variation a reduction in initial roughness 
of 75% (initial value: Sa-S = 1,57 µm) is targeted. In the ensuing “fine” variation of 𝑃𝐿  and 𝑣𝑠 the target of Sa-S = 0.2 µm is 
tracked. 

Additionally, two runs of the LPM-PPD strategy based on DOE are evaluated. In the first run, the process parameter space 
investigated by DOE is restricted through use of domain knowledge. For the second run, the domain knowledge is withheld. 
Both runs of the LPM-PPD strategy based on DOE are composed of two respective batches of process parameter sets. For 
the first batch, a face-centered central composite design with 15 parameter combinations is applied. Different levels for 
variation of 𝑑𝐿, 𝑃𝐿 , and 𝑣𝑠 are chosen with constant 𝑑𝑦 and 𝑛. In each instance of the second batch of process parameter 
sets, the respective determined local optimum is used to create a full-factorial DOE with 35 entries. 𝑑𝐿 is no longer varied to 
keep a constant melt pool width, whilst 𝑃𝐿 , 𝑣𝑠, 𝑑𝑦, and 𝑛 are varied to balance melt pool width, repeated local remelting 
and processing time simultaneously. Table 6 gives an overview of the two individual runs of two-stage DOE. 

Table 6. Overview of the variation of process parameters and levels for the two benchmarked runs of LPM-PPD based on DOE. 

 DOE with domain knowledge  

 𝒅𝑳 in µm 𝑷𝑳 in W 𝒗𝒔 in mm/s 𝒅𝒚 in µm 𝒏 DOE type 

1. batch [150, 250, 400] [50, 125, 200] [25, 100, 175] 0.25× 𝑑𝐿 2 Central composite 

2. batch 
𝑑𝐿,𝑏𝑎𝑡𝑐ℎ1 

[0.8333 × 𝑃𝐿,𝑏𝑎𝑡𝑐ℎ1, 
𝑃𝐿,𝑏𝑎𝑡𝑐ℎ1, 

1.2 × 𝑃𝐿,𝑏𝑎𝑡𝑐ℎ1] 

[𝑣𝑠,𝑏𝑎𝑡𝑐ℎ1, 

1.5 × 𝑣𝑠,𝑏𝑎𝑡𝑐ℎ1] 

[0.25, 0.2, 0.1] 

× 𝑑𝐿,𝑏𝑎𝑡𝑐ℎ1 
[2, 4] Full factorial 

 DOE without domain knowledge  

 𝒅𝑳 in µm 𝑷𝑳 in W 𝒗𝒔 in mm/s 𝒅𝒚 in µm 𝒏 DOE type 

1. batch [100, 400, 600] [50, 275, 500] [25, 162.5, 300] 0.25× 𝑑𝐿 2 Central composite 

2. batch 
𝑑𝐿,𝑏𝑎𝑡𝑐ℎ1 

[0.8333 × 𝑃𝐿,𝑏𝑎𝑡𝑐ℎ1, 
𝑃𝐿,𝑏𝑎𝑡𝑐ℎ1, 

1.2 × 𝑃𝐿,𝑏𝑎𝑡𝑐ℎ1] 

[𝑣𝑠,𝑏𝑎𝑡𝑐ℎ1, 
1.5 × 𝑣𝑠,𝑏𝑎𝑡𝑐ℎ1] 

[0.25, 0.2, 0.1] 
× 𝑑𝐿,𝑏𝑎𝑡𝑐ℎ1 

[2, 4] Full factorial 

4. Results and discussion 

Figure 7 shows the progression of the Sa-S value against the accumulated cycle time during the LPM-PPD: (a) shows the 
results of the algorithm for sequential variation, (b) shows the results of the strategy based on DOE. The target value of the 
LPM-PPD of Sa-S ≤ 0.2 µm is indicated by a red, horizontal line. Only a section up to Sa-S ≤ 0.4 µm is shown to better 
distinguish the individual markings. Respectively, the initial roughness of Sa-S = 1.57 µm is cut off. Each starting process 
parameter set is assigned to a specific color in (a). The respective current locally optimal process parameter set of the LPM-
PPD is marked as a data point in color of the starting point. The laser beam diameter, which is subject to change during a 
run, is assigned an individual symbol. An overview of the symbols for 𝑑𝐿 is shown in the legend. 

Above all, it is shown that the developed benchmarking framework is effective. The surrogate model can be used with 
different digitized strategies to adapt and determine process parameter sets in various iterations for a specified target. Figure 
7 (a) shows that the developed algorithm for sequential variation adapts the process parameters dimensions effectively. The 
target of Sa-S = 0.2 µm is achieved for all tested initial values except 𝑑𝐿 = 100 µm. The algorithm for sequential variation 
shows a trend to converge to 𝑑𝐿 = 250 µm and each adjustment of 𝑑𝐿 in this direction between batches further reduces Sa-
S. Thus, the algorithm for sequential variation compensates for suboptimal starting process parameter sets and shows high 
robustness against a suboptimal starting process parameter set. The lowest roughness, Sa-S = 0.1050 µm, is reached after 
calculated cycle time 𝑡𝐶  = 5.8968 h. In Table 7 the determined process parameter sets per strategy are listed. 

Figure 7 (b) shows that Sa-S = 0.2 µm is met in both DOE variants – one using domain knowledge and one without. Using 
domain knowledge, the DOE reaches a much lower roughness then the DOE without domain knowledge and 𝑑𝐿 = 250 µm is 
selected. A process parameter set for Sa-S = 0.105 µm is identified after just 𝑡𝐶  = 2.88 h. Whilst overall a smaller 𝑡𝐶  is 
calculated than using the developed algorithm for sequential variation, the time between batches is increased and therefore 
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the efficiency per batch is decreased. Without domain knowledge, the DOE yields only one parameter set with Sa-S = 0.182 
µm. In this case, 𝑑𝐿 = 400 µm is used, and the second DOE batch does not further reduce roughness.  

 

Table 7. Process parameter sets determined by LPM-PPD strategies benchmarked in this study targeting reduction in initial roughness. 

LPM-PPD strategy 𝒅𝑳 in µm 𝑷𝑳 in W 𝒗𝒔 in mm/s 𝒅𝒚 in µm 𝒏 𝒕𝑷 in s Sa-S in µm 

Algorithm for sequential variation 250 156 125 25 2 64 0.105 

DOE with domain knowledge 250 104 100 62.5 4 64 0.105 

DOE without domain knowledge 400 275 37.5 100 2 53 0.182 

 
Figure 8 shows the results utilizing a target vector with weights for Sa-S, Sa-L, and 𝑡𝑃, simulating multi-objective 

optimization. In Figure 8 (a) and (b), the Sa-S value predicted after the LPM-PPD, and in (c) and (d) the calculated 𝑡𝑃for the 
respective process parameter sets are plotted against the variation of the target vector. Figure 8 (a) and (c) show the results 
for the use of the developed algorithm for sequential variation and (b) and (d) for the use of DOE. 

Figure 8 (a) and (b) demonstrate that decreasing weight assigned to Sa-S in the target vector results in a higher predicted 
value of Sa-S after LPM-PPD. The lowest values of Sa-S over all are predicted when specifying a target vector of (1, 0, 0). It is 
shown that a weight greater than 0.7 must be assigned to Sa-S to reach the target 0.2 µm in all tested instances. Lastly, with 
a weight of 0.5 for Sa-S the target roughness is only achieved using DOE on a parameter space restricted by domain 
knowledge (Figure 8 (b)) where a weight of 0.4 can be assigned to 𝑡𝑃. Figure 8 (c) and (d) show that using a target vector in 
the benchmark framework is an effective method for implementing multi-objective optimization without an increase in 
computing time. With an increasing weight assigned to Sa-S, 𝑡𝑃 of the determined process parameter sets is reduced, both 
when using the algorithm for sequential variation as well as in the DOE runs. The trend toward a decrease in 𝑡𝑃 results in a 
corresponding trend toward an increase in Sa-S. The lowest values of 𝑡𝑃 are calculated for weights of (0.5, 0.1, 0.4). 
 

(a) (b) 

Figure 7: Sa-S value against the accumulated cycle time of LMP-PPD targeting Sa-S = 0.2 µm for different starting process parameter sets. (a) 

Algorithm for sequential variation and (b) two runs of DOE. Max. 50 investigated process parameter sets. 
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5. Summary and outlook 

In this work a surrogate model for laser polishing of AISI H11 is developed to replace real-world experimental 
investigations. In combination with digitized process parameter development strategies for laser polishing of metals, a 
framework for benchmarking these strategies based on the low-cost surrogate model is created and validated. In the 
benchmark framework, the evaluated LPM-PPD strategy suggests process parameter sets to the surrogate model which 
returns a prediction of the resulting surface roughness. Boundary conditions can be specified to restrict the strategy, for 
example target roughness or the maximum number of investigated process parameter sets. The effectiveness, measured by 
achieved roughness, and the efficiency, based on the accumulated cycle time of LPM-PPD, are determined for each strategy 
by the benchmark framework. Since each run of a strategy using the surrogate model is significantly faster than real-world 
experiments and almost cost-free, entire virtual LPM-PPD campaigns can be completed in seconds instead of weeks. This for 
the first time enables systematically comparing alternative LPM-PPD strategies in different scenarios (e.g., limited number 
of test material, limited cycle time, minimal target roughness). 

The surrogate model is based on a multi-layer perceptron which is trained on 2560 measured process parameter sets. It 
predicts the surface roughness value Sa with an RMSE of 0.16 µm and median relative model error of 9.32 % across the 
entire roughness range of the data set. 

Using the benchmark framework, two LPM-PPD strategies are compared. For the first strategy, an algorithm is developed 
digitizing LMP-PPD based on extensive domain knowledge distilled from two dissertations. As domain knowledge, the 
methodology of process experts on LPM is listed explicitly, including sequencing, limits and adjustment of process parameter 
dimensions. In this domain knowledge, the individual influence of the process parameter dimensions beam diameter 𝑑𝐿, 
laser power 𝑃𝐿  and scanning speed 𝑣𝑆, track offset 𝑑𝑦, and number of passes 𝑛 on LPM is recorded. The second strategy is 
based on two types of a two-stage design of experiments (DOE), resembling the reported state of the art for LPM-PPD. For 
the first type of DOE, the searched process parameter dimensions are restricted based on the recorded domain-knowledge 

Figure 8: (a) and (b) Sa-S value predicted after LPM-PPD against variation of target vector determining weights for [Sa-S, Sa-L, 𝑡𝑃]. (c) and (d) 

corresponding 𝑡𝐶  against variation of target vector. Max. 50 investigated process parameter sets. 

 

(b) (a) 

(d) (c) 
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of given material. The second type of DOE searches the full parameter space recorded within the data set on which the 
surrogate model is developed. 

The LPM-PPD strategy based on domain knowledge consistently reaches the target roughness (Sa-S ≤ 0.2 µm) in fewer 
than 50 “virtual” experiments, even when it starts from deliberately far from optimal parameter sets (variation of laser beam 
diameter as starting process parameter). The process parameter dimensions are adjusted effectively between batches of 
process parameter sets and 𝑑𝐿 converges to an optimum in accordance with the state of the art. A minimal roughness of Sa-
S = 0.105 µm is predicted for the most optimal of determined process parameter set. The same roughness can be achieved 
by LPM-PPD based on DOE – but only if the process parameter dimensions are restricted to favourable areas based on 
domain knowledge. Therefore, it is shown that domain knowledge in sequential variation as well as DOE for process 
parameter dimensions is pivotal for balancing effectiveness and efficiency in LPM-PPD. 

Through the evaluation of these LPM-PPD strategies it is shown that differing respective efficiency and effectiveness can 
be determined. Multiple runs of different LPM-PPD strategies are completed effectively through the interaction of the 
digitized strategies and the surrogate model. Thereby, the developed benchmark framework is validated. Additionally, it is 
shown that a multi-objective optimization of process parameter sets can be realised using the weighted sum to compute an 
auxiliary target value from several objectives (e.g., surface roughness, surface waviness, areal processing time). Respective 
process parameter sets are determined flexibly without retraining the surrogate model or increasing computation time. 

In future work, the established methodology should be expanded to include further materials, initial surface profiles and 
machine configurations. Additionally, the benchmark framework should be adapted to determine subsequent process 
parameter sets for a second step of macro-polishing or a step of micro-polishing in accordance with the state of the art. 

Furthermore, the developed benchmark framework should be used to evaluate additional LPM-PPD strategies based on 
machine learning methods, such as Bayesian Optimization or evolutionary algorithms such as particle swarm optimization. 
Consequently, the findings should be used to drive automation of LPM-PPD. A real-time recommendation of process 
parameters, considering machine-specific limits and cost models, further industrializes the usage of laser polishing of metals. 
Regarding the surrogate modelling, an interesting direction for future work is to investigate whether the surrogate model 
can be effectively trained on significantly less data with minimal loss in accuracy. Additionally, it would be valuable to explore 
whether the learned feature space can be efficiently adapted to new materials or different surface roughness conditions 
with a reduced number of experiments. 
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