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Abstract 

To meet stringent requirements in terms of productivity and efficiency, the industry is shifting towards machine tools with sensors and 
auto-tuning capabilities enabled by Artificial Intelligence (AI) algorithms. Accordingly, in laser cutting the coaxial monitoring of the molten 
pool provides relevant information that can be interpreted by means of Machine Learning (ML) approaches to enable real-time velocity-
based feedback control. In the present research, a holistic control architecture was thus developed and validated on an industrial case-
study to demonstrate its applicability. Targeting iso-quality conditions, experiments on sample geometries on 5 mm thick stainless steel 
allowed to showcase an increase in productivity whilst avoiding critical defects such as cut dominated by plasma formation or loss of cut. 
The results obtained may be extended to a wide range of materials and sheet thicknesses demonstrating the generalized applicability of 
the technological framework. 
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1. Introduction 

High-power fusion laser cutting is a well-established technique for processing metal sheets and tubes of millimeter-range 
thicknesses. In both scientific and industrial communities, there is an ongoing interest in enhancing productivity and 
maintaining high-quality results. In this context, the application of monitoring sensors to gain insights into the process is 
highly valuable to sense the cut edge quality. The most employed monitoring techniques are based on photodiodes and 
camera-based solutions. The first ones were exploited to identify loss of cut or plasma-dominated cutting states (Adelmann 
et al., 2016; Schleier et al., 2017). On the other hand, there is a strong evidence in the scientific community that camera-
based solutions have a stronger potential thanks to the possibility of collecting spatially resolved information. In this case, 
different camera configurations can be implemented, i.e. off-axis side view or coaxial view (Poprawel & Konig, 2001; Wen et 
al., 2012). Furthermore, the collected process images can be utilized together with Machine Learning (ML) and Artificial 
Intelligence (AI) techniques to sense and detect the cut quality. This has been implemented for both the fusion laser cutting 
(Pacher et al., 2020),(Pacher et al., 2019) and the reactive fusion laser cutting processes (Pacher et al., 2023).  Moreover, 
according to the estimated cut quality, real-time control techniques may be exploited to regulate process parameters, with 
the goal of increasing the process productivity and improving the final cut quality. In this framework, speed regulation control 
schemes have been developed and tested in real-time to minimize the dross of the cut edge profile (Guerra et al., 2025; 
Pacher et al., 2020). However, in an industrial scenario, there are still some open challenges, such as the loss of cut or plasma-
dominated state, which can occur at high cutting speed values. Both of these two cutting states should be avoided due to 
their destructive nature on the final cut quality.  
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 The present work proposes a novel control architecture to improve process productivity whilst maintaining iso-quality 
conditions. Exploiting a NIR coaxial camera monitoring architecture, a real-time dross attachment estimate and cut class 
classifier were developed and then employed together to build a supervisor logic and closed-loop control scheme to regulate 
the cutting speed (Pacher, Gandolfi, et al.). The presented approach was finally tested in real-time on an industrial case-
study during the fusion cutting of 5mm thick stainless steel, maximizing productivity and cut quality, whilst preventing the 
formation of typical cut-quality defects such as plasma and loss of cut. Furthermore, the presented architecture was 
validated by cutting a real-case demonstrator geometry, highlighting the generalized applicability of the technological 
framework to industrially relevant case studies. 

2. Materials and method 

2.1. Experimental setup 

An industrial laser cutting machine (LC5, Adige-SYS S.p.A. BLM Group, Levico Terme (TN), Italy) was used to realize the 
experiments of this work. The employed laser source (YLS-6000-CUT, IPG Photonics) is a 6-kW fiber laser source, with a 100 
μm core diameter. Moreover, the collimation and the focalization lens of the cutting head are respectively of 75mm and of 
155mm. Furthermore, a CMOS coaxial camera (xiQ MQ013MG-ON, Ximea GmbH, Münster, Germany) was employed to 
acquire melt pool images. The process emission light is then filtered in the 700-1000 nm wavelength band. The laser cutting 
system and the coaxial camera monitoring architecture are shown in Fig 1. Furthermore, Table 1 reports the main 
specifications. 

Table 1. Laser cutting and monitoring system specifications 

Laser cutting and monitoring systems  

Parameter Value  

Emission wavelength, 𝜆 (nm) 1070  

Collimation length, 𝑓𝑐𝑜𝑙 (mm) 75  

Fiber core diameter, 𝑑𝑐𝑜𝑟𝑒 (μm) 100  

Focalization length, 𝑓𝑓𝑜𝑐 (mm) 155  

Beam waist diameter, 𝑑0 (μm) 207  

Maximum power, 𝑃max (kW) 6  

Wavelength observation band, 𝜆𝑜𝑏𝑠 (nm) 700-1000  

 

Fig. 1. (a) Laser cutting head and monitoring system; (b) Working scheme of the main components 
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The monitoring system allows the acquisition of process emission images of the melt pool, subsequently analysed for the 
training of the dross attachment estimate and cut class classifier models. Fig 2 shows an example of the images analysis 
pipeline: firstly, the original frame is binarized applying a hard thresholding at different binarization levels, then a series of 
geometrical features (i.e. Area, Length, Width, Perimeter, Lag, etc.) is extracted and employed as input of the ML algorithm 
training phase. 

2.2. Experimental design 

The scope of this research was to develop a novel control scheme based on the dross estimate and cut class classifier, 
together with a supervisor control logic, with the goal of improving productivity, by regulating the speed in real-time, 
maintaining iso-quality conditions. To realize this, the dross attachment estimate proposed previously by (Guerra et al., 
2025) was taken as a reference and complemented with the cut class classifier, to correctly detect plasma formation or loss 
of cut condition. The aim of the experimental design was to induce quality variations on the cut profile in terms of different 
process states that could occur during the fusion laser cutting. 

The employed material was 5 mm thick AISI304 stainless steel. The starting point of the experimental campaign 
corresponds to optimized process parameters. The laser power was set to 6 kW with a nozzle diameter of 2mm and the N2 
assisting gas pressure was set to 18 bar. Moreover, the focal position of the laser beam was kept Δ𝑓= -5.7mm, the stand-off 
distance at 0.7 mm. The cutting speed was employed as variable parameter to determine different process states in terms 
of cut quality condition (i.e., standard cut, plasma cut, loss of cut). Moreover, different cutting directions were required and 
applied during the experimental campaign to develop a robust ML algorithm (Guerra et al., 2025), suitable for an industrial 
applicability of the approach. Table 2 shows the fixed and variable parameters of the experimental campaign. 

Table 2. Fixed and variable parameters of the experimental campaign to train the cut class classifier 

Fixed factors Value 

Material AISI304 

Thickness (mm) 5 

Power, 𝑃 (W) 6000 

Assist gas N2 

Pressure, 𝑝 (bar) 18 

Nozzle diameter, 𝑑𝑛𝑜𝑧 (mm) 2.0 

Stand-off distance, 𝑆𝑂𝐷 (mm) 0.7 

Focus, Δ𝑓 (mm) -5.7 

Variable factors Value 

Cutting speed 𝑣 (mm/min) 5000-6000-7000-8000 

Cutting direction, 𝜃 (degree) 0-90-180-270 

 

Fig. 2. Image analysis pipeline: (a) original captured frame; (b) hard thresholding of the gray-scale image; (c) extraction of geometrical features; (d) 

dross estimate and cut class classifier models training 
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2.3. Machine Learning approach 

Following the dataset acquisition from the experimental campaign of Section 2.2, a supervised Machine Learning 
approach was exploited to construct a classifier model for the process state condition. The cut samples were labelled after 
observing the process and assessing the cut profile in terms of process state (cut class “0”, “1”, “2”, respectively for standard 
cut, plasma cut, loss of cut). 

A multiclass random forest algorithm was selected to classify the process state condition in real time. Other ML algorithms 
were trained and tested but such performances are not reported in this work for conciseness. The experimental design 
resulted in a full dataset of 232242 points, which have been divided in 70% for the training phase (with 10-fold cross 
validation) and 30% for the testing phase. 

The selected random forest classifier presents equal class weight for the three process state conditions, a max_depth 
parameter of 7, and 7 estimators. 

The performance of the cut class classifier was evaluated based on statistical indicators, such as the Accuracy of the 
model, the Precision (P), the Recall (R) and the F1-score, defined as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 (1) 

𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

𝐹1 = 2 ∗
𝑃 ∗ 𝑅

𝑃 + 𝑅
 (4) 

where TP, FP, TN and FN stand for True Positive, False Positive, True Negative and False Negative, respectively, and are the 
outputs of the algorithm’s confusion matrix. 

2.4. Closed-loop control architecture based on dross estimate, cut class classifier and switching supervisor 

The aim of the presented research is to regulate the cutting speed in real time, maximizing productivity and preventing 
the formation of typical cut quality defects, such as plasma-dominated state and loss of cut. To realize that, a closed-loop 
control architecture based on a dross estimate model and cut class classifier was constructed, as schematized in Fig 3. 

Fig. 3. Schematic representation of the developed closed-loop control architecture  
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The two mentioned cut quality models were designed exploiting process relevant information extracted from melt pool 

emission images which have been collected from a NIR coaxial camera monitoring system, as discussed by Mazzoleni 
(Mazzoleni et al., 2020) . The output provided by the dross attachment estimate (𝑦̂1) is compared with a user defined 
reference value y0, and a Proportional-Integral (PI) regulator R(s) is employed to regulate the cutting speed in real-time to 
track it, as discussed and implemented previously. Furthermore, the output of the cut class classification algorithm (𝑦̂2) is 
then provided to a supervisor logic S(s) which developed a control logic action that is superimposed to the updated cutting 
speed v provided by PI regulator. More in particular, if the detected process state is loss of cut or plasma-dominated cut 
then the speed controller provides a constant decrement of 0.1% of the current set value. On the other side, if the classifier 
detects a standard process condition, the PI regulator is responsible for the real-time speed control to track the dross 
reference set-point y0.  

 

2.5. Experimental design for controller architecture testing 

After the development of the control architecture, different real-time control experiments were designed and realized to 
test the control system in different and industrially relevant conditions. The fixed factors remained consistent with the 
previous experimental design, while the variable factor was the initial set velocity vi, which was regulated by the controller. 
Table 3 presents the fixed and variable parameters of the experimental campaign to test the real-time control system. 

Table 3. Fixed and variable parameters of the real-time control system tests. 

Fixed factors Value 

Material AISI304 

Thickness (mm) 5 

Power, 𝑃 (W) 6000 

Assist gas N2 

Pressure, 𝑝 (bar) 18 

Nozzle diameter, 𝑑𝑛𝑜𝑧 (mm) 2.0 

Stand-off distance, 𝑆𝑂𝐷 (mm) 0.7 

Focus, Δ𝑓 (mm) -5.7 

Variable factors Value 

Starting cutting speed 𝑣 

(mm/min) 
5200-8000 

 
 
 The first experiment considers the case in which a conservative value of cutting velocity is selected corresponding to the 

standard value for 5 mm thick stainless steel (i.e. 5200 mm/min). Hence, the controller must be capable of increasing the 
speed whilst avoiding plasma and loss of cut formation. On the other hand the second control experiment starts from loss 
of cut condition with an initial cutting speed of 8000 mm/min. Therefore, the controller must activate itself to decrease the 
cutting velocity and regain standard processing conditions. 

Furthermore, in industrial settings, custom geometries often feature segments with varying directions and curvature. To 
demonstrate the effectiveness of the developed closed-loop control in such environments, the system was tested on a 
complex shape, i.e. a design object with a vase shape, as shown in Fig 4. The vase geometry was ad-hoc designed by the 
authors with the different varying segments and curvatures to test and underline the applicability of the presented 
technological framework and control scheme to industrially relevant case studies.   



LiM 2025 - 6 

3. Results 

3.1. Cut class classifier model 

As previously mentioned, the feature selection stage is a crucial step in selecting indicators that are correlated to the 
investigated cut quality defects (i.e. dross attachment, plasma formation and loss of cut) but at the same time not influenced 
by the cutting direction. Since the cut class classifier model should work in real-time with the dross attachment estimation 
algorithm (Guerra et al., 2025), the authors employed the same features selected by the Maximum Relevance Minimum 
Redundancy (MRMR) algorithm utilized for the Neural Network dross estimation model developed in previous works. 

In this section, the results of the supervised classification algorithm are shown in the confusion matrices of Fig 5 (a) for 
the training phase and Fig 5 (b) for the testing phase. Furthermore, from the confusion matrices results, the previously 
mentioned statistical indicators were evaluated to characterize the cut class classifier model performances. Table 4 shows 
the model performances in terms of Accuracy, Precision (P), Recall (R) and F1-score for the investigated cut class quality. It 
is possible to observe that a high level of model accuracy can be achieved in both the training and testing phase, 
corresponding to 99.9% and 99.9% respectively.  

Fig 5. Confusion matrix of the training phase (a) and the testing phase (b) of the selected cut class classifier model. 

Fig. 4. Design of the demonstrator vase geometry: (a) Technical drawing of the vase geometry with principal dimensions; (b) Expected outcome of the 

vase demonstrator. 
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Table 4. Performances of the cut class classifier model in terms of Accuracy, Precision (P), Recall (R) and F1-score 

Model Cut Class Training Testing 
  

P R F1 P R F1 

Random Forest 
Classifier 

0: Standard  99.9% 100% 99.9% 99.9% 100% 99.9% 

1: Plasma 98.3% 97.9% 98.1% 98.6% 96.6% 97.6% 

2: LOC 99.9% 99.5% 99.7% 99.7% 99.6% 99.6% 
 

3.2. Real-time closed loop control of the process 

As previously mentioned, to demonstrate the feasibility of the developed approach for control applications, closed-loop 
real-time control experiments were realized. Fig 6 shows the results for different starting conditions. 

In Fig 6 (a) the controller starts from a low level of initial cutting speed (i.e. vi = 5200 mm/min), which corresponds to a 
standard cut condition. Due to the difference between the estimated dross (blue signal) and reference (red signal) dross, the 
control architecture gradually increases the speed up to the final optimal value of vf = 6240 mm/min (Fig 6 (b)), according to 
the target dross level set at 0.02 mm. Moreover, it can be observed, from the blue cut class signal of Fig 6 (b), that the 
process state condition is detected correctly by the cut class classifier (i.e. standard cut), resulting in a cutting speed increase. 

In the second experiment the process starts in a loss of cut dominated state from a high initial cutting speed of 8000 
mm/min, (shown in blue in Fig 6 (c)) as detected by the classifier (cut class = 2). Therefore, the controller decreases the 
cutting speed to overcome this critical process condition, transitioning through the plasma-dominated state (cut class = 1) 
and finally achieving a cutting speed that provides a standard cut condition. As a consequence, the PI controller regulates 
the speed to the final value of vf = 5940 mm/min (Fig 6 (d)) to reach the target dross level set at 0.02 mm. 

Furthermore, few peaks in the dross estimate signal can be observed in both of the experiments, which correspond to 
passages of the laser cutting head on the supporting laser grid that influence the image analysis and models training phases, 
as mentioned by Guerra (Guerra et al., 2024). For this reason, the developed ML models and control architecture were 
designed to maintain robust performance under the grid disturbance, as realized in the mentioned work. 

 

Fig 6. Real-time control experiments realized from different starting conditions (a),(b) standard cut with starting cutting speed of 5200 mm/min and 

dross reference (red) of 0.02 mm; (c),(d) loss of cut with starting cutting speed of 8000 mm/min and dross reference (red) of 0.02 mm 
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 In both the presented cases, the novel control architecture based on the dross estimate and cut class classifier is capable 

of correctly detect the process state condition and consequently regulating the cutting speed to the optimal value that 
guarantees the feasibility of the cut (cut class = 0) and at the same time maximizes productivity and quality by reaching the 
set dross reference with the highest possible cutting speed value.  

Moreover, the productivity increases with respect to the reference speed vref  = 5200 mm/min results in a final cutting 
speed of 6000 mm/min, enabling an increase of approximately 15%. 

3.3 Testing on industrial demonstrator case-study 

This section illustrates the final outcome of the demonstrator case study previously introduced in Section 2.5. More in 
particular, Fig 7(a) illustrates the laser cutting system during the cutting operation, whilst Fig 7(b) shows the final vase 
demonstrator. Moreover, Fig 7(c) presents the real-time speed regulation during the cutting of a curved line of the vase 
geometry, highlighted in red in Fig 7(d).  

Furthermore, to demonstrate the productivity increase with respect to a standard nominal condition, the same vase 
geometry was cut on 5 mm thick stainless steel without the real-time speed control, employing the same process parameters 
of Section 2.5 and a standard cutting speed of 5200 mm/min. 

It’s important to underline that during the vase demonstrator case, the real-time control architecture guarantees an 
overall cutting time decrease of approximately 30 s enabling a productivity increase of around 15%, according to the previous 
realized control experiments. 

Fig. 7. (a) Laser cutting system during the cutting phase of the vase demonstrator case; (b) final vase demonstrator; (c) real-time speed control 

regulation during a curved line of the vase geometry, as represented and highlighted in red in (d) 
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4. Conclusions 

The present work develops a control approach to regulate in real time the cutting speed of stainless steel fiber laser 
cutting process. A coaxial camera monitoring architecture was employed to extract process relevant information and 
correlate them to the observed cut quality, in terms of both dross attachment and process state. The main results can be 
summarized as follows: 
• A supervised cut class classifier was developed to detect in real time the process state from the collected camera 

frames with an overall accuracy of the model above 99%. 
• The mentioned cut class classifier was integrated with a NN dross estimate model into a closed-loop control 

architecture, tested with real-time control experiments. 
• The presented approach was finally tested on a complex geometry case study, demonstrating the system feasibility and 

capabilities on relevant industrial scenarios whilst guaranteeing the reduction of the cutting time and an increase of the 
process productivity of approximately 15%. 
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