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Abstract 
 
Cutting interruptions in 2D laser cutting are undesired for several reasons: They lead to an unnecessarily high material 
consumption and decrease the productivity of the laser cutting machine. Furthermore, they can contaminate the laser 
cutting head and thus influence subsequent processes negatively or cause long set-up times. Therefore, we developed a 
model to predict cutting interruptions, exemplarily for 3 mm stainless steel. We have set 1050 different combinations of 
the cutting parameters nozzle-sheet distance, gas pressure, nozzle-focus distance and speed on a state-of-the-art laser 
cutting machine. It was then determined whether separating the sheet was possible or not. The experimentally 
generated database was used to train a simple, interpretable machine learning model to predict cutting interruptions 
reliably. An averaged accuracy and recall larger than 95 % could be obtained with a polynomial logistic regression 
approach. In addition to that, it could be shown that speed and focal position are the most crucial parameters. 
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1. Introduction 

Today, laser cutting is the most common application of the laser with a share of 35 % of all industrial 
applications according to Kincade et al., 2018. In conventional laser cutting machines the laser beam is 
guided through the focusing optics of the cutting head, it then passes through a nozzle from which a coaxial 
gas jet flows. The high energy density of the focused beam enables it to melt or evaporate the underlying 
material. The gas jet is used to both remove the melt from the kerf and to protect the optics (Steen and 
Mazumder, 2010).  
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Laser cutting has many advantages compared to competing processes. Of particular interest in industrial 
applications are the simultaneous maximization of quality and productivity (Poprawe et al., 2010). To 
achieve these two goals, operators often need to adjust the process parameters to the current conditions, 
e.g. material properties. As laser cutting is a very complex process, changing the parameters through an 
inexperienced operator might, in the worst case, result in a cutting interruption. Cutting interruptions waste 
material and they can contaminate both optics and nozzle and thus influence subsequent processes 
negatively or cause machine downtimes. Therefore, they are very cost and time consuming and should be 
avoided. Adelmann et al., 2015 presented a possible solution, an optical sensor that can be attached to the 
laser cutting machine to detect cutting interruptions by measuring the process radiation. Nevertheless, it 
would be advantageous to avoid cutting interruptions a priori. For this purpose, a reliable model to predict 
cutting interruptions for all possible combinations of the process parameters is required. 

The objective of this paper is to model the risk of a cutting interruption based on 4 dominant cutting 
parameters with a simple, interpretable machine learning model and to increase the understanding of the 
complex effects and interdependencies of the cutting parameters. First, the experimental setup and the 
logistic regression model are introduced. Then the risk of a cutting interruption is analyzed separately for 
every considered process parameter and finally the performance of the model is evaluated. 

2. Methods 

2.1. Experimental setup 

In order to generate the data base for the machine learning model, we tried to cut 1103 parts on a 
modern laser cutting machine with a disk laser (TruLaser 5030 fiber with TruDisk 12001).  In the experiment 
considered here only 3 mm thick stainless steel of one batch was cut with the standard cutting process. 

The laser cutting process depends on numerous cutting parameters, 4 of which were modified for this 
experiment: nozzle-sheet distance, gas pressure, nozzle-focus distance and cutting speed. The nozzle-sheet 
distance is the distance between the tip of the nozzle and the top side of the sheet. The gas pressure is the 
pressure of the assist gas (here nitrogen) that is blown within the kerf to drive out the molten material. The 
nozzle-focus distance is the distance between the tip of the nozzle and the focus of the laser beam. A focus 
position below the tip of the nozzle results in a negative value, whereas the nozzle-focus distance is positive 
when the focus of the beam is located within the cutting head. As the machine is equipped with flying optics, 
the laser cutting head moves above the sheet with the cutting speed. All other parameters (e.g. laser power 
of 8 kW, focus diameter of 150 µm) were held constant. 

The ranges and steps of the parameter variation are shown in Table 1. In the last column of the table the 
optimum of each parameter is shown respectively, as specified in the manual of the laser cutting machine. 

Table 1. Ranges, step widths and optima of modified cutting parameters 

Parameter Unit Minimum Maximum Step width Number of steps Optimum 

Nozzle-sheet distance mm 0.5 3 0.5 6 1.5 

Gas pressure bar 9 21 3 5 15 

Nozzle-focus distance mm -3.5 -0.5 0.5 7 -2 

Cutting speed m/min 13 29 4 5 21 
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These 4 cutting parameters were combined fully factorially, which results in 1050 different parameter 
combinations, 5 % of which were repeated randomly. This leads to 1103 parameter combinations in total. 
We cut squares with a side length of 10 cm. For every part it was documented whether cutting was 
successful (with the cut quality not being considered here) or not.  The corners were rounded off and the 
power was not reduced there, because only straight cuts were investigated. 

When performing cutting experiments that go beyond the stability limit of the cutting process, it is very 
important to monitor the status of the machine. To make sure that the nozzle and the optics were clean, the 
nozzle and the protection glass (which is positioned in the laser cutting head between nozzle and optics) 
were checked every 25 parts. In addition to that, beam caustic measurements were performed at the same 
interval to make sure that there was no abnormal thermal behavior, caused for example by back-reflections 
of the laser beam. The nozzle-sheet distance is controlled capacitively, so that it is constant although the 
sheet is not perfectly flat. This control system performs poorly if a plasma is formed between nozzle and 
sheet. For this reason, the quality of the control system was monitored constantly. 

2.2. Logistic regression model 

Logistic regression is one of various tools for understanding and working with data using statistical 
learning. The linear, multivariate logistic regression model for binary classification (output Y ϵ {0,1}) is 
defined by 

𝑝𝑝(𝑋𝑋) =
𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑋𝑋1+𝛽𝛽2𝑋𝑋2+…+𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛

1 +  𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑋𝑋1+𝛽𝛽2𝑋𝑋2+…+𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛
 (1) 

with p(X) = Pr(Y = 1|X ), n input features X = (X1, X2, …, Xn) and n + 1 coefficients β0, β1, …, βn (James et al., 
2017).  
 

In this paper p(X) is the probability of a cutting interruption for a specific combination of the input 
features. Here the input features are based on the cutting parameters (nozzle-sheet distance, gas pressure, 
nozzle-focus distance and cutting speed), supplemented by the focus position, which is a combination of 
nozzle-sheet distance and nozzle-focus distance. The focus position is the position of the focus relative to the 
top side of the sheet, which is calculated by simply adding nozzle-sheet and nozzle-focus distance. If the 
focus is located within or below the sheet, the focus position is negative. If it is located above the sheet, the 
focus position is positive. To model the nonlinearity these 5 features were extended by all polynomial 
combinations of degree 3 or smaller, which results in a total number of n=55 features. 

After selecting the model, the coefficients β0, β1, …, βn have to be estimated such that p(X) is close to 1 for 
all feature combinations that result in a cutting interruption and close to 0 for all feature combinations that 
result in a successful separation of the sheet (the threshold is 0.5). There are many approaches to the fitting 
of the model. We have used the LogisticRegression model of the Python library sci-kit learn (Pedregosa et al., 
2011), with the following settings: penalty = 'l2', solver = 'liblinear', class_weight = 'balanced'. The model was 
trained on 75 % of the data and tested on randomly selected, previously unseen 25 % of the data. 

To visualize the performance of the algorithm, we use the confusion matrix (James et al., 2017). The two 
rows represent the instances of the predicted class, while the two columns represent the instances of the 
true class. The matrix contains the numbers of true positives TP (prediction: cutting interruption, true class: 
cutting interruption), true negatives TN (prediction: cutting successful, true class: cutting successful), false 
positives FP (prediction: cutting interruption, true class: cutting successful) and false negatives FN 
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(prediction: cutting successful, true class: cutting interruption). From these numbers the following evaluation 
metrics can be deduced (Kubat, 2015): 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  (𝑇𝑇𝑇𝑇 +  𝑇𝑇𝑇𝑇) (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹)⁄  (2) 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑇𝑇𝑇𝑇 (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)⁄  (3) 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) (4) 

3. Results 

3.1. Analysis of the data base 

Of the 1103 parameter combinations, 6 samples had to be deleted because the quality of the nozzle-sheet 
distance control was insufficient. 223 or 20.3 % of the remaining 1097 parameter combinations resulted in 
cutting interruptions, 874 or 79.7 % in successful cuts. There are 996 unique combinations of the 4 cutting 
parameters, 48 are at least double. 4 of these 48 parameter combinations resulted once in a cutting 
interruption and once (or more) in a successful cut. They are listed in Table 2. 

Table 2. Parameter combinations that resulted in both cutting interruptions and successful cuts 

Nozzle-sheet 
distance in mm 

Gas pressure 
in bar 

Nozzle-focus 
distance in mm 

Cutting speed 
in m/min 

Number of cutting 
interruptions 

Number of 
successful cuts 

0.5  9  -3.5  17  1 1 

2.0 21 -0.5 25 1 1 

2.5 15 -1.5 29 1 1 

3.0 15 -1.0 21 1 3 

 
The dependency of the risk of a cutting interruption on each of the 4 varied cutting parameters is shown 

in Figure 1.  
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Fig. 1. Risk of a cutting interruption dependent on nozzle-sheet distance (a), gas pressure (b), nozzle-focus distance (c), cutting speed 
(d), focus position (e) and nozzle-sheet distance for constant focus positions (fp) (f) 
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The nozzle-sheet distance (Figure 1 a) shows a U-shaped curve with a minimum at 2.5 mm which is not 
consistent with the recommended value of 1.5 mm. In the case of the nozzle-focus distance (Figure 1 c) 
there is a U-shaped curve as well with a minimum at the optimum value of -2 mm. The stable range is even 
smaller than for the nozzle-sheet distance. The relation between gas pressure (Figure 1 b) and number of 
cutting interruptions corresponds to a polynomial of first order. The higher the gas pressure the larger is the 
risk of unsuccessful cutting, but it should be mentioned that the cutting interruptions increase by less than 
10 % over the whole pressure range. The relation between cutting interruptions and speed seems to be at 
least cubic (Figure 1 d). It increases from close to 0 % for 13 m/min to 58 % for 29 m/min. 

It must be considered that changing the nozzle-sheet distance does not only change the gas dynamics, but 
it also has an impact on the position of the focus (when the nozzle-focus distance is kept constant). 
Therefore, it makes sense to look at the focus position, which is the combination of these 2 parameters. At 
the margins, at focus positions lower than -2 and higher than +2 mm, the risk of cutting interruptions is even 
larger than for a cutting speed of 29 m/min (see Figure 1 e). 

The impact of the gas dynamics when altering the nozzle-sheet distance is relatively low compared to the 
influence of the focus position. In Figure 1 f the number of cutting interruptions is plotted over the nozzle-
sheet distance for constant focus positions. The effect of only changing the distance between nozzle and 
sheet and thus changing the gas dynamics is in the order of magnitude of the gas pressures’ impact. 

It can be concluded that the most important cutting parameters for predicting the success or failure of a 
parameter combination are focus position and speed. 

3.2. Performance of the model 

The performance of the model is visualized in the confusion matrix in Figure 2 a. To test how well the 
model generalizes, it was tested on 280 previously unseen samples.  

  
a b 

Fig. 2. Confusion matrix of multivariate, polynomial logistic regression model (a), 10 features with the largest coefficients (b) 

The performance of the model on the test set is satisfactory: Only 10 of 223 parameter combinations that 
result in successful cuts are misclassified as cutting interruptions. A successful cut is assumed wrong for only 
2 of 57 parameter combinations. The accuracy is 96 %, the precision is 85 % and the recall is 96 %. The low 
precision value (compared to the recall) is acceptable, because a wrong classified cutting interruption is 
much more disadvantageous than the other way around. To demonstrate that the performance is 
reproducible the results of a cross validation (with 4 folds) are shown in Table 3. 
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Table 3. Evaluation of model performance 

 Misclassified cutting 
interruptions (fn) 

Misclassified successful 
cuts (fp) 

Accuracy Precision Recall 

Test set 1 4 of 56 11 of 214 0.9466 0.8254 0.9286 

Test set 2 3 of 56 7 of 217 0.9643 0.8833 0.9464 

Test set 3 3 of 56 8 of 216 0.9607 0.8689 0.9464 

Test set 4 0 of 55 14 of 210 0.9498 0.7971 1.0 

Mean   0.9554 0.8437 0.9554 

Std   0.0073 0.0343 0.0268 

 
One big advantage of this model is its interpretability. In Figure 2 b the features with the 10 largest 

coefficient values are shown in descending order. Each coefficient was divided by the sum of all 56 
coefficients, thus their proportional influence on the prediction of the model can be visualized. These 10 
features represent 49 % of the total influence, the remaining 51 % are shared among the other 46 features.  

Unsurprisingly, the feature with the largest coefficient consists of the combination of speed (s) and focus 
position (fp) as already assumed in section 3.1. The cutting parameter speed is part of 8, the focus position is 
part of 5 of the shown 10 features. The nozzle-sheet distance (ns) is found 3 times, the pressure (p) twice 
and the nozzle-focus distance (nf) only once. However, it should be emphasized, that the nozzle-focus 
distance only changes the position of the focus, which is represented by the focus position feature as well. 

4. Conclusion 

In this paper, a polynomial logistic regression model was developed to predict cutting interruptions 
dependent on the cutting parameters nozzle-sheet distance, gas pressure, nozzle-focus distance and speed 
reliably. The performance of the model is repeatable, and it generalizes well. An averaged accuracy of more 
than 95 % and an averaged recall better than 95 % could be achieved. We showed that speed and focus 
position (which is influenced by nozzle-sheet and nozzle-focus distance) are the most crucial influence 
variables.  

The presented model could be improved by including further influence variables like for example laser 
power, focal width, complex contours and different material qualities. 
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