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Abstract 

In this work we present the deployment of a novel data analytics solution on Additive manufacturing of stainless steel 
parts by Laser metal deposition. Several relevant parameters are monitored in a synchronized manner over time, 
especially the power of the laser, the thermal information by means of the high speed IR coaxial thermal images of the 
melt pool and the position and speed of the robot. The dataset is represented in a 3D graphic environment to facilitate 
its interpretation. In this environment appears the toolpath with associated information corresponding to the thermal 
history represented in a color scale. The significant variation of the thermal information and its distribution on the 3D 
map denotes areas of potential problems on metallurgical quality and suggest better design options, strategies for 
toolpath planning and suitable process control approaches. Part quality results are correlated with the build information 
of the proposed 3D mapping. 
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1. Introduction 

Direct Energy Deposition (DED) processes are showing a growing interest in the industry as they have 
strong capabilities to build large-sized components, even over non-flat surfaces and with fast building rates 
comparing to other AM processes. Among them, Laser metal deposition (LMD), also know as Direct Laser 
Deposition (DLD), processes are gaining importance and have been investigated heavily in the last several 
years as it provides the potential to (i) rapidly prototype metallic parts, (ii) produce complex and customized 
parts, (iii) clad/repair precious metallic components. 

Recently, different closed-loop control systems have been implemented to improve the robustness, 
reliability and the geometrical accuracy of components built by powder- LMD. Specifically, researchers have 
monitored laser parameters, melt pool metrics, part temperature, feed material, geometry, and optical 
emissions during processing. A common strategy is sensing and control of melt-pool size or temperature. 
Other efforts have attempted to maintain a constant layer build height by directly sensing build height and 
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adjusting processing head position, processing speed, material feed rate or laser power. As a result, the 
exploitation of LMD processes continues to accelerate. 

However, work remains for AM to reach the status of a full production-ready technology. Production 
challenges remain such as: assurance of quality, right-first-time manufacturing capability and the complexity 
of AM processes involving many input parameters are technological barriers preventing the widespread 
deployment in manufacturing sectors at industrial level.  

Ensuring AM process qualification and good part quality has many different aspects, such as: part design, 
feedstock material, process parametrization, process planning, manufacturing strategies, inline and online 
monitoring and control sytems, etc.  Besides geometrical accuracy of the part, microstructure is a very 
important characteristic of the laser deposit because it has a strong impact on the mechanical properties.  
The two main common defects or material discontinuities that limit final part quality are porosity and cracks. 
Thus, the wider adoption of AM technologies require techniques that improve the quality of parts, namely, 
microstructure anomalies and main process defects such as porosity and cracks.  

This paper reports on the development of a prototypical implementation of 3D mapping of different 
relevant thermal features by LMD spatially resolved in part coordinates. As a representative case scenario for 
deployment of the solution, a set of stainless steel 316L coupons with T-cross geometrical shape were built 
with different path planning and process control conditions.  

By this novel data visualization tool, throughout registered data during execution of the build up and 
subsequent image processing, we were able to locate potential part quality issues and evaluate the 
performance of different path planning alternatives and a process control system. Initial correlation of part 
digital information generated during build-up with as-built part testing results are presented. The proof-of-
concepts shows the applicability of the approach towards process qualification for large parts manufactured 
by LMD, underlying sensor information analyses and relevance of the acquired process information. 

2. Experimental set up, materials and methods 

The robotic LMD industrial workcell and main equipment used is shown in Figure 1. It consists on a 6-AXIS 
industrial robot ABB4400 as positioning system that is holding and displacing LMD process head along part 
built. Main process equipment is a thin disk laser Trudisk coupled by 200µm optical fiber to a laser process 
head BEO D70 (Trumpf). A powder feeder from GTV delivers the metallic powder through a coaxial injection 
nozzle COAX8 from Fraunhofer IWS. 

A close loop control system based on high speed coaxial MWIR imaging is installed, CLAMIR by New 
Infrared Technologies (www.clamir.com). The embedded system with real time processing capabilities 
obtains IR images of melt pool at very high frame rates (1 KHz), extract key features of this image (such as 
width) and based on specific algorithms, it controls the power of the laser during process by the action of an 
embedded PI controller 

 

Fig. 1. Robotic laser metal deposition workstation and process and control equipment of the experimental setup 
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2.1. System architecture and data acquisition 

Online access to different type of data originated from the laser workcell and extracted information from 
high speed MWIR coaxial imaging system are registered and processed via dedicated software. The 
architecture has been designed to be modular and fully asynchronous, based on the use of timestamps to 
correlate information over time.  

Robot main information such as position, orientation, speed is captured along process execution. A ROS 
driver had been developed to integrate the cell in the OpenLMD architecture. Other main process variables 
as laser power, powder feed rate are registered through Analog-Digital converters.  

CLAMIR imager is VPD PbSe sensor 64x64 pixels (pixel size: 50 µm), with MWIR spectral response range 
within 1 -5 um, frame rate 1000 images per second. Data acquisition and power actuation log at 1kHz is 
saved for posterior processing. MWIR coaxial image raw data may be also registered up to this frame rate.   

For the purpose of the 3D mapping, datasets of the test coupons were collected at the acquisition rate of 
10Hz during process execution. For data compression and easy data handling, bespoke HDF5 file format is 
used. Thanks to this approach, the system is capable to record all the generated process information and 
datasets through HDF5 and it can represent the data acquired in part coordinates in a 3D environment. 
Moreover, stored files can be reproduced later to recreate full process virtual visualization. 

2.2.  Process parametrization  

Target test parts for deploying this solution are 316L stainless steel T- crosses with curved walls 
intersecting with ribs. CAD main dimensions are shown in figure below (height=60mm, base-t cross=30mm 
and 4mm thickness) The test part defined is a section of a larger component with cylindrical shape and 1m 
diameter. 

 Feedstock powder material is stainless steel 316L from Flame Spray (45-90µm particle size) and base 
plate of 250x125x10mm.  

 During process set up and parametrization, main key process parameters were investigated by standard 
procedure: thus, process window was defined within the following parameter set: Laser power= 1000W; 
Process speed=8mm/s; Powder feed rate=8g/min. 

The track width after process optimization obtained is: 2.1mm. Additional process development tests as 
1-layer multi tracks and several layers deposition were conducted to finally estimate other slicing/path 
planning configuration parameters such as overlap (55% of track width) and layer height (0.45mm).  

2.3. Deposition pattern and path planning  

Those parameters were used as an input in the slicing software for path planning generation. According 
required part dimensions, and since positive oversizing by LMD is required, different deposition strategies 
can be used for this complexity of the part. Patterns such as raster scanning and offset-in were generated 
and postprocessed for execution in robot laser workcell by in-house developed CAD-CAM for AM software. 
Visualization of the deposition strategies is represented by sequence of steps identified by numbers in the 
following figures: 
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Fig. 2. 3D geometry representation of the test part (left) (I) 2D raster deposition strategy (II), laser metal deposit strategy defined as 
offset in. First track is the contour of the part and then several tracks identified in image as 2,3,4 are departing from central position. 
Generated by Slic3r open source software (https://slic3r.org/) 

2.4. Image analysis features. Methodology for 3D mapping. 

Coaxial thermal images are registered by a 64x64pixel 12bits MWIR Tachyon sensor (also by New Infrared 
Technologies) installed in CLAMIR. Besides process control capabilities based on melt pool geometrical 
analysis, real-time process information recorded by MWIR sensor that is analysed further offline, after 
process execution. The first step in the image analysis is to segment the image (using automatic thresholds 
based on distributions) in three regions: meltpool, tail (correspond mostly to solidification/heat affected 
area) and background. 

 

 
 

Fig. 3 left shows an in-process image data, illustrating segmentation of the meltpool and the tail area, marked by an ellipse describing 
the contour.  On the right, it shows the longitudinal and transversal main axis (meltpool, tail) and how the gradient features are 
calculated (a)longitudinal, (b) tail-meltpool, (c)transversal-meltpool. 
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Calculation of thermal features: thermal profiles and gradients. 
Thermal profiles and gradients are extracted for the two principal directions of the process, longitudinal 

and cross-sectional of the meltpool, and for a cross-sectional of the tail. For each image, a line is 
approximated following the tail direction. Using boolean operations for a parallel of this line and its 
perpendicular, at the center of the meltpool, the heat gradients are extracted. Using these profiles, the 
gradients are calculated from the highest point to the end of the tail / meltpool 
 
Calculation of thermal features: shape descriptors. 

For each zone in the segmentation, an ellipse is used as an approximation, extracting features as size and 
shape are calculated. The dimensionality of spatial process information can be used to determine different 
process conditions and faults. This shape descriptors and additional features are calculated and will be used 
for further machine learning methodologies.  

3. Results and analyses 

For the afore-mentioned hardware set up and optimized processing parameter window, a set of test 
componets for assessment for the data analysis were defined with the following differences: 

 
Test part Path planning  Control system-

CLAMIR 

Part A (I) on 

Part B (II) on 

Part C (II) off 

 
Datasets of the build information collected (positioning system, laser power, powder feeder, images of 

CLAMIR) are registered and syncronised in hdf5 file format for posterior analysis. Full process virtual 
visualization in spatial coordinates is possible by representing all the recorded and processed data in a 3D 
environment. 

 
List and group of data recorded  

Position: x, y, z on the piece; Orientation: Orientation quaterns of the robot; Speed: Speed of the 
robot at that point; Laser power; powder_flow: Powder flow reading from the sensor.  

Timestamp: Time & date 
CLAMIR data:_area: area of the meltpool in pixels; clamir_power: Power output by CLAMIR; 

clamir_width; Clamir_ref_width: Width reference in use; clamir_temp: Internal temperature of device. 
 
Stainless steel coupons were manufactured by LMD, visual inspection characteristics and further 

characterisation is correlated with the visualization of the build information by in situ monitoring system.   
 

Visual inspection 
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Fig. 4. Photographs of the different test parts manufactured as-built stainless steel, from left to right - Part A) Part B) Part C) 

It is clearly noted by naked eye the geometrical accuracy and final finish quality is better when process 
control is used. Both A) and B) present quite homogenous and consistent surface quality aspect. Regarding 
visual differences, between part A) and part B), the first keeps better height layer consistency, and on the 
second, accumulation of material at start/end points of the fill in tracks and intersection of the T-cross . 
These observations can be correlated with the different path planning strategies. This confirms the highly 
influential effect of process strategy over geometrical accuracy. Besides, online control system have been 
implemented to improve the geometrical accuracy of components built by  LMD-p to ensure geometrical 
accuracy of the final part 

Basic part quality assessment methods as visual inspection were followed by geometrical inspection and 
measurement (height and wall thickness over 60mm and 4mm respectively are within initial defined 
tolerances in all cases) 

 
Comparison test part B) vs  test part C) 
 

The data files contain the same design manufactured with and without laser-power control. Both files 
contain: robot positions, raw images from the process, measures extracted from the controller (CLAMIR) and 
features extracted from the images.   

Actuation of laser power control on/off is investigated. In C) the melt pool width calculated by the control 
embedded system (clamir width) increases from the start to the end of the build as shown on the wall since 
deposition starts on a cool substrate and successive passes are being deposited on the previous, hot layer. 
Analogously, start and end of tracks suffer from overheating and several cycles. Process instabilities at the 
edge of the tracks lead to large geometrical deviations. In Part B) deviations in width are kept to minimum. 
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Fig. 5. 3D representation of the “CLAMIR width” with and without process control (left-part B) and right-part C) 

Comparison test part A) vs test partB) 
 

Two different path planning strategies were investigated. Front and back 3D reconstruction of thermal 
feature of clamIR width is plotted for both strategies with the same colour scheme 

 

 

Fig. 6. 3D representation from front and rear view of the “CLAMIR width” for different pathplanning strategies (left -part A- raster 
deposition and right: part B-offset in 

 Thermal heat dissipation mechanisms depending on path planning can be better understood. For the 
case of raster scan, the first tracks of the layer present more instabilities that can be observed by variability 
of colour map. This also can be noticeable by the external surface finish roughness of the part for that face 
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Data correlation with information from destructive testing 
 
A replica of part B) was manufactured and destructive testing by cross-sectional analysis and macrographs 

were also been carried out at z plane=30mm.  
 
 

 

Figure 7. a) 3D representation of the “CLAMIR width” at Z=30mm with unstability of the melt pool area on the righ hand end. B) thermal 
gradient for the hottest part of the melt pool to heat affected zone also highlights the same area. C and d) Cross-section macrographs  

Non-destructive testing by X-ray also shown identification porosity areas mostly located at those areas.  
3D representation of thermal metrics can correlate to variations in material microstructure from the cross 
section analysis. Although these are still preliminary results, the use of thermal metrics such as meltpool and 
tail/heat affected gradient may allow for a non-destructive means to differ and distinct thermal histories 
during a build, which have an impact on microstructure.  
 
Data correlation with NDT part quality data 

 
Part 3D digital scanning can measure geometrical deviations and disparity map respect to target 

geometry.   Other non-destructive tests as X-ray CT where defects such as porosity can be located positioned 
in XYZ part coordinates are under investigation   

In-situ thermal monitoring provides a useful tool to provide information about the formation of defects or 
other process anomalies for additive manufacturing processes. The 3D representation colour map highlight 
the areas/features of major attention as the melt pool diameter/area directly relates with the heat 
management throughout the build process. Spatial and temporal correlation of part defects with image data 
will be needed to progress on the labelling of defects. 

4. Conclusions and next steps 

The 3D visualization of this thermal features spatially resolved during LMD build-up are effective ways to 
assess manufacturing strategies and the performance of a process control system. Initial experimental 
results validate the proposed approach. 

This 3D mapping allows relating the parameters involved in the process to quality parameters measured 
by DT and NDT the piece. Experimental correlation between further destructive and non-destructive tests 
with registered data during build up are being undertaken. Ongoing work deals with the acquisition of 
partially labeled data with the aim of setting up detection and measurement benchmarks for defects such as 
porosity. 
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3D visualization of the build-up information allows the adoption of data-driven strategies and 
process/quality related decisions better and faster. By this set of image-analysis features, we set up an initial 
machine learning framework to establish a relationship between melt pool morphological characteristics and 
anomalies in the microstructure. It allows localization of potential areas of defect and constitutes first step 
towards digital twin (digital representation of the physical part being manufactured). 

Data collected from the process can be utilized for various research and development purposes, model 
verifications, process characterization and process optimization.  Thus, such data, collected via use of 
monitoring equipment can then be used to significantly reduce the time required to ‘learn’ about optimal 
process parameter set for a good quality LMD part.  

In order to progress on the process qualification and consistency of high quality parts by LMD, thermal 
features extracted from online process shall be used to drive big data analysis tools (addressing robustness 
and repeatability of the process) and new data-driven solutions to detect machine malfunctions or process 
anomalies such as: energy source or gas flows fluctuations, clogged nozzle, stand-off deviations. 

To summarize, a novel methodology and integrated solution based on data analysis of MWIR coaxial high-
speed imaging features during LMD-p processes has been introduced. It provides a flexible solution capable 
of working with different positioning, process and monitoring equipment, thus supporting the acquisition 
and analysis of big amounts of process data, referred to common temporal and spatial reference systems. 
Hence, progress towards the implementation of in-situ monitoring for LMD process qualification has been 
made. 
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