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Abstract 

An analytically model for laser transmission welding of thermoplastics will be set up. The local evolution of the 
temperature field and the formation of the weld joint are modeled in terms of explicit analytical expressions. Necessary 
approximations will be pointed out keeping computations manageable. The model yields explicit expressions for a 
process window, weld seam width and depth as well as the tensile strength in terms of the process and materials 
parameters. The predictions of the model fit well to results obtained from systematic welding experiments. 
Furthermore, the results show that the analytical model enables a much better understanding of the welding process 
and allows a much quicker process parameter adaptation within industrial applications. 
 
Keywords: laser welding thermoplastics; analytical model; process parameters; experimental verification; 

1. Introduction and Motivation 

Theoretical models of manufacturing processes are the basis of process simulations that play an 
increasingly important role in developing and improving industrial production. As far as laser transmission 
welding of thermoplastics is concerned these models usually start from physical first principles equations, 
e.g. heat conduction combined with appropriate boundary conditions and use numerical tools to solve these 
equations (Acherjee et al., 2012). Often these approaches are restricted to thermal modeling and do not 
consider the joining process itself (Hopmann & Sooriyapiragasam, 2014). Due to the numerical character of 
the solutions no statements about the effect of parameter variations can be read of from formulas 
describing the solutions but require more or less extensive parameter studies.  Occasionally more profound 
insight is obtained from analytical models if these can be found. Analytical models mostly must use 
significant simplifications of the real situations to provide explicit solutions. Despite they may be considered 
as toy models they create a deeper understanding and their solutions allow quick and easy estimates to 
adapt parameters for process applications. 
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In this contribution an analytical model for laser transmission contour welding of thermoplastics is set up. 
After pointing out the chosen approximations, analytical expressions for the temporal and spatial 
temperature behaviour in the welding zone as well as for the formation of the joint will be developed. Easy 
analytical evaluability will be one of the central aspects in setting up these expressions. Quantitative 
predictions for measurable characteristics of the weld will be made. The predictions will be compared with 
experimental welding results for Polyamide 6 specimens.  

2. Description of the Model 

2.1. Model Preliminaries 

As a basis for modeling the standard arrangement of laser transmission contour welding is assumed as 
shown in figure 1. A polymer part transparent or translucent for the laser beam is pressed onto a laser 
absorbent polymer part by an appropriate clamping load (Russek, 2006). 

Fig. 1. Standard arrangement of laser transmission contour welding (After: Wikipedia, Laserdurchstrahlschweißen, 2019).  

As the laser power density distribution (PDD) moves with constant feed velocity over the surface of the 
transparent part the beam power is transmitted to the contact plane of the parts and is converted to heat in 
the absorbent part, where a melt zone is formed. Heat conduction transfers thermal energy into the 
transparent part, too, and forms a melt zone there. By contact of the melt zones the weld seam is formed 
that joins the parts after solidification.  
For an analytical model description of this process the following assumptions are made (Hölzemann, 2018) 
• the contact zone is plane, no pre-weld structure exists 
• the PDD of the laser beam is known in the contact zone 
• the radius of the PDD is much larger than the optical penetration depth 𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜 of the absorbent part 
• ideal thermal contact is ensured by the clamping 
• apart from the absorbent additive the transparent and the absorbent part are made from same basis 

thermoplastic material and have equal material parameters, e.g. mass density 𝜌𝜌, specific heat c, thermal 
conductivity 𝐾𝐾and thus equal thermal diffusivity 𝜅𝜅 = 𝐾𝐾 𝑐𝑐𝑐𝑐⁄  

• both welding parts are considered as thick, i.e. they can be treated as semi-infinite as far as heat 
conduction is concerned; welding of polymer foils or films is excluded 

• only heat conduction contributes to heat transport in the material, radiative heat transport is neglected 
• there is no melt dynamics, no melt bulges and especially no melt jets appear. 
These assumptions turn out to be essential to make the situation simple enough for an analytical modeling. 

The results of the model will be examined with respect to these assumptions. 
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𝑡𝑡𝑉𝑉 =
𝛿𝛿02
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2.2. Thermal modeling 

Using the theory of partial differential equations (Morse & Feshbach, 1953) it is possible to find an 
analytically solvable integral equation for the temperature field of the heat source distribution caused by 
laser absorption in the absorbent part. This solution strategy is not followed here. The results turn out to be 
too involved to unravel an underlying structure and to allow simple evaluation with respect to observable 
quantities like e.g. the weld seam section and its dimensions. However, the results show that the 
temperature dependence with respect to the z-direction is approximately described by functions that do not 
differ very much from the fundamental solution of the heat equation. This motivates the following more 
physically minded phenomenological approach using the fundamental solution (Green’s function) of the heat 
equation.   
     To start with, it is assumed that irradiation has produced an infinitesimally thin laterally constant surface 
heat energy density 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 concentrated in a layer at 𝑧𝑧 = 𝑧𝑧0. For generality the position 𝑧𝑧0 may differ 
slightly from the contact plane of figure 1 which is defined at 𝑧𝑧 = 0. The spatiotemporal spreading of the 
heat energy in vertical direction 𝑧𝑧 can be described by a Gaussian temperature distribution which is the 
fundamental solution of the heat equation. As the low temperature wings of the Gaussian are not essential 
for the welding process the Gaussian is approximated by a triangular distribution for the temperature 
increase ∆𝑇𝑇(𝑧𝑧, 𝑡𝑡) = 𝑇𝑇(𝑧𝑧, 𝑡𝑡) − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. The function reads (Hölzemann 2018) 

 
         (1) 
 

with the thermal parameters 𝜌𝜌𝑀𝑀 , 𝑐𝑐, 𝜅𝜅 assumed the same in both parts as outlined in section 2.1. The symbol 
Θ(𝑥𝑥) stands for the Heaviside Theta function which equals 0 for 𝑥𝑥 < 0 and takes the value 1 for 𝑥𝑥 ≥ 0. The 
square brackets stand as abbreviation for [𝑥𝑥] = 𝑥𝑥 ⋅ Θ(𝑥𝑥) and correspond to the Föppl- or Macaulay-brackets 
used elsewhere in engineering (Wikipedia, Macaulay Brackets, 2019).  𝛿𝛿(𝑡𝑡) = √8𝜅𝜅𝜅𝜅 describes the time 
dependent half width of the triangle and is identical to the thermal penetration depth (Morse & Feshbach, 
1953). 𝛿𝛿(𝑡𝑡) vanishes when time approaches zero and the temperature increase ∆𝑇𝑇 approaches infinity at 
𝑧𝑧 = 𝑧𝑧0 and zero everywhere else.  
      Inserting modifications and appropriate expressions for 𝛿𝛿(𝑡𝑡), 𝑧𝑧0,𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑⁄   the function (1) can adapted 
to describe the temperature distribution for contour welding in a surprisingly reasonable way. First, 
substituting 𝑡𝑡 → 𝑡𝑡 + 𝑡𝑡𝑉𝑉  in 𝛿𝛿(𝑡𝑡)  the initial surface heat energy density at 𝑡𝑡 = 0  is present not in an 
infinitesimally thin layer but spread over thickness 𝛿𝛿0 around the layer at 𝑧𝑧 = 𝑧𝑧0. The 𝑡𝑡𝑉𝑉 is a virtual lead time 
that must be determined from the condition 𝛿𝛿(𝑡𝑡 = 0) = 𝛿𝛿0 yielding 
 
                                        (2) 
 
A modified width 𝛿𝛿2(𝑡𝑡) = 𝛿𝛿02 ⋅ (1 + 𝑡𝑡/𝑡𝑡𝑉𝑉) is found. The virtual lead time 𝑡𝑡𝑉𝑉 characterizes the rate of increase 
of the width 𝛿𝛿(𝑡𝑡). 
By these simple substitutions the temperature function now describes the temperature development 
starting from a triangular initial distribution after but not during laser irradiation. It turns out, however, that 
for the usual feed velocities in contour welding the irradiation time is of the same order of magnitude as the 
virtual lead time 𝑡𝑡𝑉𝑉. Thus it is a reasonable approximation to treat heat conduction as if it appears after 
irradiation and to neglect further modifications.  
Note that with insertion of 𝑡𝑡𝑉𝑉 in 𝛿𝛿(𝑡𝑡) the initial temperature distribution of eq. (1) has a symmetric triangular 
z-dependence. This does not fit very well the asymmetric exponential z-dependence of the volume heat 
power density enforced by Beer’s absorption law with optical penetration depth 𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜. Nevertheless the 

∆𝑇𝑇(𝑧𝑧, 𝑡𝑡) =
𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑐𝑐 𝜌𝜌 𝛿𝛿(𝑡𝑡) ⋅ Θ �1 −

|𝑧𝑧 − 𝑧𝑧0|
𝛿𝛿(𝑡𝑡) � ⋅ �1 −

|𝑧𝑧 − 𝑧𝑧0|
𝛿𝛿(𝑡𝑡) � =

𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑⁄
𝑐𝑐 𝜌𝜌 𝛿𝛿(𝑡𝑡) ⋅ �1 −

|𝑧𝑧 − 𝑧𝑧0|
𝛿𝛿(𝑡𝑡) � 
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triangular form will be kept for simplicity. By choosing 𝛿𝛿0 = 𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜 and 𝑧𝑧0 = 0.49 ⋅ 𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜 ≈ 𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜 2⁄  the average 
quadratic deviation between the triangular and the exponential distribution is minimized and for further 
consideration these values will be used. It is clear already at this point that the model will not be able to 
reproduce e.g. weld seam sections that are asymmetric with respect to the z-direction 
      In a standard set up for contour welding of plastics the contact plane surface heat energy density 
𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 in (1) is generated by a uniformly moving circularly symmetric laser PDD with radius  𝑤𝑤. As usually 
the relation 𝑤𝑤 ≫ 𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜 holds the typical time 𝑡𝑡𝑉𝑉, eq. (2), for heat conduction into the depth of the material is 
much shorter than the analog time constant 𝑡𝑡𝑤𝑤 for heat conduction into the transverse direction. One finds 
𝑡𝑡𝑤𝑤 𝑡𝑡𝑉𝑉⁄ = 𝑤𝑤2 𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜2� . Common values 𝑤𝑤 ≥ 1 mm and 𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜 ≤ 0.1 mm yield 𝑡𝑡𝑤𝑤 𝑡𝑡𝑉𝑉⁄ ≈ 100. This implies that the 
weld is formed due to heat conduction into the depth before lateral heat conduction must be taken into 
account. Lateral spreading of the temperature can be neglected and (1) suffices to describe heat conduction.  
   The boundary of a circular PDD of radius 𝑤𝑤 moving with feed velocity 𝑣𝑣 over the contact plane to positive 
𝑦𝑦-direction is represented by a moving circle 𝑥𝑥2 + (𝑦𝑦 − 𝑣𝑣 ⋅ 𝑡𝑡)2 = 𝑤𝑤2.  Solving this equation for 𝑡𝑡 the instant 
𝑡𝑡𝐵𝐵 for the begin and the instant 𝑡𝑡𝐸𝐸 for the end of irradiation by the laser beam can be computed for any 
given position (𝑥𝑥, 𝑦𝑦) on the surface. The results for 𝑡𝑡𝐵𝐵/𝐸𝐸 read  

 
                                                  (3) 
                                                                       

The use of the quadratic approximation with 𝑔𝑔 ≈ 1.37 for the root avoids for all 𝑥𝑥 that imaginary times 
occur. This substitution is justified as the difference between the root and its approximation becomes 
relevant only for 𝑥𝑥 ≥ 𝑤𝑤 where the power density values of the corresponding PDD become negligible, i.e. no 
power is irradiated there. Corresponding to the varying instants of irradiation the previous expressions for 
the width function 𝛿𝛿(𝑡𝑡) must be modified to yield      
 
                                                                                                                                                                                          (4) 
 
(remember 𝛿𝛿0 = 𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜). The Theta function has to be inserted in (5) to maintain causality so that the 
spreading starts exactly with the begin of irradiation and no effects occur before. Again the previously 
introduced Macaulay bracket notation is used.  
      The final step that has to be taken is to substitute the naïve constant surface heat energy density 
𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 by the appropriate expression 𝑑𝑑𝑑𝑑(𝑥𝑥, 𝑦𝑦, 𝑡𝑡)/𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 involving the PDD 𝐼𝐼(𝑥𝑥,𝑦𝑦 − 𝑣𝑣 ⋅ 𝑡𝑡) moving across 
the contact plane. For a general PDD this is 
 
                                                                                                                                                                                          (5) 
 
For Gaussian PDD 𝐼𝐼(𝑥𝑥, 𝑦𝑦) = 2 𝑃𝑃 𝜋𝜋𝑤𝑤2⁄ ⋅ exp{−2 (𝑥𝑥2 + 𝑦𝑦2)/𝑤𝑤2} where 𝑃𝑃 and 𝑤𝑤 stand for power and radius 
of the PDD the integral can be done in terms of error functions obtaining 
 
                                                                                                                                                                                          (6) 
 
Plugging all ingredients in equations (5,6) as well as (4), (3) and (2) into equation (1) a closed formula for the 
temperature distribution will result. This, however, relies on temperature independent parameters for mass 
density, specific heat and thermal diffusivity. Whereas this is satisfied approximately for the mass density it 
is known from thermal analysis that neither specific heat nor thermal diffusivity are temperature 
independent. In addition fusion enthalpy must be taken into account for partially crystalline polymers. In 
order to cope with the temperature dependencies of the specific heat the full temperature range for welding 

𝛿𝛿2(𝑡𝑡) = 𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜2 ⋅ �1 +
𝑡𝑡 − 𝑡𝑡𝐵𝐵(𝑥𝑥,𝑦𝑦)

𝑡𝑡𝑉𝑉
⋅ Θ�𝑡𝑡 − 𝑡𝑡𝐵𝐵(𝑥𝑥,𝑦𝑦)�� = 𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜2 ⋅ �1 + �
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�� 

𝑑𝑑𝑑𝑑(𝑥𝑥,𝑦𝑦, 𝑡𝑡)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = � 𝐼𝐼(𝑥𝑥,𝑦𝑦 − 𝑣𝑣 ⋅ 𝑡𝑡′) 𝑑𝑑𝑑𝑑′

𝑡𝑡

0
=
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𝑣𝑣 ⋅ � 𝐼𝐼(𝑥𝑥,𝑦𝑦′) 𝑑𝑑𝑑𝑑′

𝑦𝑦

𝑦𝑦−𝑣𝑣⋅𝑡𝑡
 

𝑑𝑑𝑄𝑄𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑡𝑡)
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is divided in the range R1 between ambient and melting temperature 0 ≤ ∆𝑇𝑇1 < ∆𝑇𝑇𝑀𝑀   with the average 
specific heat 𝑐𝑐𝑠𝑠 of the solid state and  the temperature range R2 between melting and at most degradation 
temperature ∆𝑇𝑇𝑀𝑀 ≤ ∆𝑇𝑇2 < ∆𝑇𝑇𝑍𝑍  with the specific heat 𝑐𝑐𝑙𝑙 of the liquid state in R2. From differential scanning 
calorimetry measurements a reasonable value of 𝑐𝑐𝑠𝑠 can be estimated. The value of 𝑐𝑐𝑙𝑙, however, is prone to 
higher uncertainty especially as the upper temperature of R2 is not exactly known. As 𝑐𝑐 enters linearly the 
temperature distribution is subject to a corresponding degree of uncertainty. The dependence on thermal 
diffusivity  𝜅𝜅 is weaker in the root of 𝛿𝛿(𝑡𝑡). Here an average value over the total temperature range is used.  
      For the temperature range R1 the previous equations can be used to find an explicit temperature 
distribution ∆𝑇𝑇1(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡). For the temperature range R2 a second temperature distribution ∆𝑇𝑇2(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) is 
computed taking the melting temperature as reference and using 𝑐𝑐𝑙𝑙. The amount of energy necessary to 
heat the polymer to melting temperature as well as the fusion enthalpy ℎ𝑀𝑀 are considered separately. 
     It is clearer to represent these temperature distributions in dimensionless scaled coordinates and 
quantities. 
Defining normalized temperatures as  
 
                                                                                                                                                                                         (7)              
with 𝑇𝑇𝑀𝑀  the melting temperature and dimensionless scaled coordinates as  
 
                                                                                                                                                                                         (8) 
the temperature distributions resulting from a Gaussian PDD read (Hölzemann, 2018) 
 
 
                                                                                                                                                                                         (9) 
 
 
with 
 
                                                                                                                                                                                        (10) 
and 
 
                                                                                                                                                                                        (11) 
 
In the present form the temperature distributions are expressed in terms of simple elementary and special 
functions depending on scaled variables. The variable 𝑡̃𝑡 that measures time in multiples of the interval 
necessary for the beam to cover the PDD radius 𝑤𝑤, the transverse coordinates 𝑥𝑥�,𝑦𝑦� measure the lateral 
position in multiples of the beam radius 𝑤𝑤 and the longitudinal depth 𝑧̃𝑧 is given in multiples of the optical 
penetration depth 𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜. The parameters may be grouped in process parameters 𝑃𝑃,𝑤𝑤, 𝑣𝑣 and 𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜 which are at 
hand for the optimization of the manufacturing result and materials parameters 𝜌𝜌, 𝑐𝑐𝑙𝑙 , 𝑐𝑐𝑠𝑠,𝐾𝐾, 𝜅𝜅,𝑇𝑇𝑀𝑀 ,𝑇𝑇𝐴𝐴  and  
melting enthalpy ℎ𝑀𝑀. The temperatures (9) depend on these parameters only via four model parameters 
𝛾𝛾,𝑃𝑃𝑃𝑃� ,𝛼𝛼 and Γ. The process parameters merely enter in 𝛾𝛾,𝑃𝑃𝑃𝑃� , so only these two parameters are at hand for 
process optimization. Physically 𝛾𝛾  is a dimensionless measure for the process energy density as the 
numerator of 𝛾𝛾 in (11) is an approximation for the energy density the beam leaves in the absorbent part. 𝑃𝑃𝑃𝑃�  
is a modified form of the Peclet number which gives a dimensionless measure for the feed velocity 𝑣𝑣.  
      The above expressions may be used to generate plots of the temperature fields. As the plot only gives a 
static two dimensional representation time and one spatial variable have to be fixed. For the example plot of 
the temperature track in the weld seam the combination 𝑡̃𝑡 = 20 and 𝑧̃𝑧 = 0 are chosen. Thus the plot 

𝜗𝜗1,2 =
∆𝑇𝑇1,2

𝑇𝑇𝑀𝑀 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
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represents the lateral temperature distribution in the contact plane after the beam has moved 20 beam radii 
after begin of irradiation. For definiteness the model parameters 𝛾𝛾 = 2.38,𝑃𝑃𝑃𝑃� = 1.57,𝛼𝛼 = 0.65  and 
Γ = 0.27 were chosen for the plot. For temperatures lower than the melting temperature, i.e. 𝜗𝜗 ≤ 1 the 
function 𝜗𝜗1 must be used and 𝜗𝜗2 for higher temperatures. Consequently two isothermal lines will be found 
for the melting temperature 𝜗𝜗 = 1, cf. the red and green lines in the plot. The area between these 
isothermal lines must be interpreted as the melting or solidification zone where solid and liquid phases 
coexist.  
 
 
 
 
 
 
Fig. 2. Isothermal plot of computed temperature distribution in weld seam. From outside to inside the isothermal lines are ϑ1 = 0.5; 1.0 
and ϑ2 = 1.0; 1.33; 1.66;  2.0 (Hölzemann, 2018) 
 
Lots of information can be obtained from plots like figure 2. For a given isothermal line the length of a 
section at some 𝑥𝑥� is identical to the time interval in which the corresponding temperature is exceeded. The 
maximum width of the isothermals allows to identify the maximum temperature reached at some point. 
However, analytical expressions can be found for all these quantities. 

2.3. Model of for joining process 

Unfortunately there is no generally accepted model for the formation of the weld joint that allows to 
estimate its tensile strength 𝜎𝜎. Here a phenomenological approach is chosen. This approach has to describe 
the fact that the tensile strength of some point in a weld joint takes the value zero if the maximum 
temperature 𝜗𝜗𝑚𝑚𝑚𝑚𝑚𝑚  acquired during the thermal history of this point is less than the welding temperature (i.e. 
for 𝜗𝜗𝑚𝑚𝑚𝑚𝑚𝑚 < 1). If higher maximum temperatures are reached the tensile strength varies to some maximum 
value.  As in an optimal weld the tensile strength approaches the value 𝜎𝜎𝐵𝐵  of the bulk material, so we 
assume that the maximum obtainable value is 𝜎𝜎 𝜎𝜎𝐵𝐵⁄ = 1.  Finally 𝜎𝜎 goes to zero again for temperatures 
higher than the approximate degradation temperature (i.e.  for 𝜗𝜗𝑚𝑚𝑚𝑚𝑚𝑚 > 𝑛𝑛 ⋅ 𝜗𝜗𝑍𝑍  ). 𝜗𝜗𝑍𝑍  is the degradation 
temperature found from e.g. thermogravimetric measurements and 𝑛𝑛 some number estimated to 1 ≤ 𝑛𝑛 ≤ 3 
The maximum temperature at a point in the weld must be found from the temperature functions of the 
previous section. From the discussed temperature ranges only the function 𝜗𝜗2  can be relevant, so 
𝜗𝜗𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜗𝜗2,𝑚𝑚𝑚𝑚𝑚𝑚. The simplest ansatz satisfying the described behavior is a parabola given by 

 
                                                                                                                                                                                (12) 

 
More exactly the formation of the tensile strength at some point will not depend on the maximum 
temperature alone but depend on the entire temperature history. However, parameters like e.g. the 
temperature holding time are neglected. Further it is assumed that the clamping pressure is chosen 
optimally. Hence no dependence on further parameters needs to be considered and the simplified 
description of (12) may be applied.  
      Note that the maximum temperature appearing in (12) will be a function of the coordinates 𝜗𝜗2,𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥�, 𝑧̃𝑧). 
If this function is inserted into the expression (12) a coordinate dependent tensile strength 𝜎𝜎(𝑥𝑥�) results. 
Figure (3) shows an example where a Gaussian temperature dependence on 𝑥𝑥� was used. The result may 
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𝜎𝜎� =
∫ 𝜎𝜎(𝑥𝑥�+𝑥𝑥�0
−𝑥𝑥�0

) 𝑑𝑑𝑥𝑥�

2 𝑥𝑥�0
 

display a central decrease in the local tensile strength. This is due to the fact that the maximum temperature 
of the Gaussian is higher than the temperature where the tensile strength function (12) reaches its 
maximum. If - even worse - the strength decreases to zero in the center degradation will be visible in the 
middle of the weld seam. 

 
 
 
 
 
 
 
 
 

 
Fig. 3. Local tensile strength in a section of the weld seam produced with a Gaussian PDD according to equation (12) (Hölzemann, 2018) 
 

In tensile tests merely the average strength 𝜎𝜎� of the joint can be measured. From the local strength found 
from (12) this calculated by 
 
                                                                                                                                                                                    (13) 
 
where  𝑥𝑥�0 is the half width of weld seam in the contact plane. Note that due to averaging the average tensile 
strength takes smaller values than the maxima of the local strength. 

3. Theoretical analysis of the model 

In this section some results that may be derived from the previous equations will be presented. The 
expressions (9) allow the calculation of the temperatures at an arbitrary time and position. This is not 
necessary in general as mostly positions reasonably distant from the start and thus much later than 𝑡𝑡 = 0 
are considered. In this case the Theta functions in (9) may be omitted and the first error function in the 
brackets, respectively, can be substituted by unity which is its asymptotical value for large argument. These 
asymptotic temperature functions depend on time 𝑡̃𝑡  and the feed motion coordinate 𝑦𝑦�  only in the 
combination 𝜂𝜂� = 𝑡̃𝑡 − 𝑦𝑦�. The plots of the temperature distributions tracks look very much like in figure 2 as 
regards the rapidly heating head of the track. Differences appear in the trail which will be more extended.  

The asymptotic functions simplify the following computations a lot. As an example the maximum values of 
the temperature history of the distributions are found from determining the extremum with respect to 𝑡̃𝑡 and 
thus to 𝜂𝜂�. The result consequently does no longer depend on  𝜂𝜂�. To a good approximation these maxima are 
obtained by inserting  𝜂𝜂� = 1 into the asymptotic functions. As  𝜂𝜂� = 𝑡̃𝑡 − 𝑦𝑦� = 0 corresponds to the position of 
the PDD center in a co-moving coordinate system 𝜂𝜂� = 1  is located one beam radius behind the center, i.e. 
the rear boundary of the PDD where the irradiation just has terminated. The resulting expressions read 
 
 
                                                                                                                with                                                                   (14) 
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From functions (14) the isothermal lines of the maximally acquired temperature in a section of the weld 
seam are determined. Fig. 4 shows a plot 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. Contour Plot of the maximally acquired temperatures in a section of the weld seam. From outside to inside the isothermal lines 
are ϑ1,max = 0.5; 1.0 and ϑ2,max = 1.0; 1.5; 2,0;  2.5.  Parameter values as in Fig.1 (Hölzemann, 2018) 
 
The contours of the maximally acquired temperatures in a section of the weld seam can be checked 
experimentally from microscopic sections of the seam. In these sections the melt zone is visible from 
changes in the morphology of the partially crystalline thermoplastic. Thus the isothermal of the maximum 
temperature 𝜗𝜗𝑚𝑚𝑚𝑚𝑚𝑚 = 1.0 can be compared with experiment. Especially the maximum lateral width 𝑥𝑥�𝑚𝑚𝑚𝑚𝑚𝑚  of 
the seam, the width 𝑥𝑥�  in the contact plane at 𝑧̃𝑧 = 0 and the thickness ∆𝑧̃𝑧𝑚𝑚𝑚𝑚𝑚𝑚 at coordinate 𝑥𝑥� = 0 can be 
compared quantitatively. Here only the expression for ∆𝑧̃𝑧𝑚𝑚𝑚𝑚𝑚𝑚  is quoted. It can be calculated analytically 
without approximation as  
 
                                                                                                                                                                                      (15) 
 
The equations for the widths 𝑥𝑥�𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑥𝑥� can be solved in an analytic approximation but will not be presented 
explicitly. All these expressions depend on the (dimensionless) process energy density and the Peclet 
number as well as on the thermal parameter Γ that are determined from (11) and the parameters of the 
material and the process as they are used in manufacturing. 
         Finally the temperature 𝜗𝜗2,𝑚𝑚𝑚𝑚𝑚𝑚  from equation (14) enters the determination of the tensile strengths in 
(12) and (13). The experimentally relevant result for the average tensile strength again yields an approximate 
analytical expression not to be quoted here. The result is presented in the plot of figure 5 with the average 
tensile strength as function of process power density and Peclet number. 
 
 
 
 
 
 
 
 
Fig. 5. Average tensile strength as function of process power density and Peclet number. Material parameters for PA 6. (Hölzemann, 
2018) 

8



 LiM 2019 

Note that the plot represents the process window for contour welding. All model parameter combinations 
(𝛾𝛾,𝑃𝑃𝑃𝑃�) fitting the band of nonvanishing tensile strength will lead to a weld joint. Note further that fixing the 
model parameters to some pair of values inside the band does not determine the process parameters 𝑃𝑃,𝑤𝑤, 𝑣𝑣 
and 𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜 uniquely as many combinations these process parameters lead to the same model parameters. 

4. Experimental evaluation of the model  

The model predictions of the previous section as well as numerous additional predictions have been 
checked with welding experiments for PA6. The thermal properties of the material as used for the 
calculations are found in appendix A.   The welds were performed using a G4 50W Fibre-Laser by SPI Inc. The 
laser works at 𝜆𝜆 = 1064 nm with an 𝑀𝑀2 ≈ 1 so that anywhere along a beam caustic the PDD is ensured to 
be Gaussian. Hence different beam radii can be chosen. A weld seam of length 𝑙𝑙 = 20 mm is  manufactured 
between two flat test pieces from transparent PA6 and PA6 with carbon black and a measured penetration 
depth 𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜 = 59.1 µm. The values of the model parameters 𝛾𝛾,𝑃𝑃𝑃𝑃�  as computed from the process and 
thermal parameters are shown in table 1. 
 
Table 1. Model parameters 𝛾𝛾,𝑃𝑃𝑃𝑃�  as used in the experiments, computed from the process parameters 𝑃𝑃,𝑣𝑣,𝑤𝑤.𝛿𝛿𝑜𝑜𝑜𝑜𝑜𝑜  and the thermal 
parameters, cf. appendix, with formulae (11)  (Hölzemann, 2018). 
 
 
 
 
 
 
 
The results of the experimental evaluation of the maximum width 𝑥𝑥�𝑚𝑚𝑚𝑚𝑚𝑚  of the weld seam, the width 𝑥𝑥� in the 
contact plane and the thickness of the weld seam are presented in table 2.    
 
Table 2. Comparison of experimental results and theoretical predictions for the maximum width 𝑥𝑥�𝑚𝑚𝑚𝑚𝑚𝑚 of the weld seam, the width 𝑥𝑥� in 
the contact plane and the thickness ∆𝑧̃𝑧𝑚𝑚𝑚𝑚𝑚𝑚 of the weld seam in respective scale units (Hölzemann, 2018). 
 
 
 
 
 
 
 
 
The last group of results is for the experimental and theoretical tensile strength contained in table 3. 
 
Table 3. Comparison of experimental results and theoretical predictions for the tensile strengths (Hölzemann, 2018). 
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Disregarding the results for ∆𝑧̃𝑧𝑚𝑚𝑚𝑚𝑚𝑚for the moment the results show a satisfactory agreement between 
theoretical predictions and experimental results. This may be not too surprising for the lateral widths 𝑥𝑥�𝑚𝑚𝑚𝑚𝑚𝑚  
and 𝑥𝑥� as heat conduction plays only a minor role for them.  In contrast to the simplicity of the approach this 
is a real surprise, however, for the values of the tensile strength. The results for ∆𝑧̃𝑧𝑚𝑚𝑚𝑚𝑚𝑚 which is highly 
sensible to heat conduction all experimental value are systematically smaller than the theoretical 
expectation. This leads to the conclusion that the temperature diffusivity has been chosen to big and the 
deviations may vanish if a more appropriate value is chosen. 

5. Conclusion and outlook 

Despite the vast assumptions and simplifications that have been made in setting up the analytical model 
promising results have been obtained from comparison with experiment. Mostly the agreement with 
experiment is satisfactory. A crucial point is the choice of adequate average values for the temperature 
dependent material properties. 

On top of the shown examples quantitative analytical equations for many other potentially interesting 
parameters can be found from the model. Most interesting the effect of the PDD shape may be studied 
quantitatively with the model. Experimentally the validity for other polymers must be tested. If the results 
are comparably successful there the model will provide an easily usable tool for parameter estimates and 
process preparation.  
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Appendix. Thermal Properties of PA6 

Table 4. Thermal properties of PA 6 as used for the calculations (in german) (Hölzemann, 2018). 
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