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Abstract 

Laser Aided Additive Manufacturing (LAAM) is a flexible AM process, enabling high build rate via direct metal deposition. 
Higher build rate with higher laser power input and rapid layer-by-layer deposition will lead to localized heat 
accumulation. This effect can be minimized by optimizing laser deposition patterns to manage temperature distribution 
to improve consistency in dimensions and microstructure. A numerical modelling and machine learning approach was 
developed. The numerical model first generates temperature field data for 8 different raster scan laser deposition 
patterns for the first few deposition layers to train the Temperature Pattern Recurrent Neural Networks (TP-RNN) 
machine learning algorithm. Subsequently, the TP-RNN algorithm outputs a simplified temperature field of the next layer 
for selecting the optimal pattern. The numerical model then computes thermal field of the determined optimized 
pattern as input data to propagate the analysis to the next layer. This approach enables an efficient method to select 3D 
deposition scan-paths. 
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1. Introduction 

Laser Aided Additive Manufacturing (LAAM), also termed Laser Metal Deposition (LMD), Directed Energy 
Deposition (DED), utilizes a high-powered laser beam to melt blown powder jets or wire feedstock for 
metallic additive manufacturing. LAAM can be used for 2D materials processing such as surface cladding 
(Naghiyan Fesharaki, Shoja-Razavi et al. 2018) and surface alloying process. Developments in tool-path 
generation and process studies extends the application to 3D processing such as repair (Zhang, Li et al. 2018) 
of part with simple geometry and progressively in 3D printing parts with increasing geometric complexities 
(Ding, Dwivedi et al. 2017).  
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The flexibility of this technology to use different laser beam size, laser power and material feeding rate, 
gives the potential to perform 3D printing at higher deposition rates (Herzog, Seyda et al. 2016) compared to 
other powder-bed AM processes.  

The higher heat input required with increasing build rate can readily lead to localized heat accumulation, 
especially for parts with small foot-print in the x-y plane (z-direction is in vertical direction). The clad 
dimensions and microstructure is determined by the melt-pool thermal gradient and solidifications rates 
(Song, Chew et al. 2018). Thus, heat accumulation implies lower stability and consistency in these two 
parameters within the same layer and more so with increasing deposited layers. Regions with lower bead 
height may be out of the powder focus position (for blown powder delivery method), yielding a lower than 
expected build height. During the next layer, the powder focus position will be further way, accumulating 
more differences in height deviation. For 3D printing process, the toolpath is usually pre-programmed 
without in-situ correction or feedback to modify the powder nozzle position. When height deviation within 
the layer becomes significant, printing of the next layer is unable to continue without intervention to make 
rectifications.  

One method to improve consistency in the deposited height includes online-feedback control of the laser 
power (Bi, Gasser et al. 2006). However, this will involve other technical challenges pertaining to hardware 
integration and accurate melt-pool characteristics or temperature monitoring. In this work, it is proposed to 
study laser deposition patterns to determine the optimized deposition strategy to improve process stability 
and consistency in layer height. The laser scanning pattern which gives the most homogenized temperature 
distribution is used as a selection criteria. An integrated finite element (FE) numerical and machine learning 
model is proposed for more efficient evaluation of the deposition pathways. This combined prediction model 
aims to address the huge computational time required when simulating multi-layer deposition processes. 
Most numerical models focused on simulating single or multi-beads depositions (Chew, Pang et al. 2015, 
Heigel, Michaleris et al. 2015) investigating only specific physical phenomenon and fields due to the 
complexities of the LAAM process. Scaling up the numerical simulation for longer process time in 3D printing 
with consideration of deposition patterns will cause an exponential increase in computation time. 
Alternatively, experimental studies may also be performed for toolpath optimization (Angelastro, Campanelli 
et al. 2017), but numerical model may be able to provide further useful insights to understanding the 
underlying mechanisms from analyzing the generated data.  

In this work, i) the thermal fields of eight variants of the basic raster scan zig-zag pattern were analyzed 
for deposition of a cube with five AM layers. The FE numerical model used to compute the temperature 
evolution had been developed and reported in an earlier work (Ren, Chew et al. 2019). ii) The temperature 
field results of the first five layers were used to train a Temperature-Pattern Recurrent Neural Networks (TP-
RNN). The trained machine learning algorithm (TP-RNN) is then applied to predict temperature fields of the 
(n+1)th layer based on numerical results of the (n-1)th and nth layers. iii) A selection evaluation criteria 
reported in (Ren, Chew et al. 2019) is then proposed and applied to select the optimized pattern for the 
machine learning output of the (n+1)th layer. The optimized toolpath is recomputed using the FE model for 
input data for propagation to the next layer. With this approach, the optimized laser scanning patterns for 
multi-layer LAAM process can be determined.  

2. Methodology 

The details on the laser scanning patterns evaluated for multi-layer cube deposition is elaborated in this 
section. The first step involves computing all the possible permutations of the selected variants of the 
scanning patterns for the first few layers to obtain the thermal field evolution. An inter-layer TP-RNN model 
is then introduced to describe the connection between temperature fields in adjacent depositing layers and 
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selected laser scanning pattern. Finally, the multi-layer cube laser scanning pattern planning framework is 
proposed to improve the homogeneity of the temperature distribution by choosing an appropriate laser 
scanning pattern strategy.  

2.1. Multi-layer LAAM simulation plan  

A five-layer cube was designed to be deposited at the center of a 5mm thickness substrate for the 
simulation experiment. The zigzag scanning patterns selected to build the part, consists of eight variants, 
with each starting from the four individual corner points (A, B, C and D) and scanning along two directions 
(x-direction and y-direction), which are referred as XA, XB, XC, XD, YA, YB, YC and YD respectively. The 
schematic of the experiment design is shown in Fig 1.  

 
Fig. 1. Simulation experiment design with laser scanning pattern set. * indicates the laser scanning starting point. 

It is observed from empirical experience that the scanning direction should generally be perpendicular in 
adjacent layers when Zigzag scanning pattern is used, thus the laser scanning direction is set along x-
direction for odd layers and y-direction for even layers. Based on the discussed consideration, each scanning 
pattern used in the current layer can lead to four different selections in the next layer. In the experiment, 
the XA is selected for the first layer, followed by 4 possible selections for the second layer, and 16 
possibilities for the third layer and so on. The propagation of the laser scanning pattern for different layers is 
shown in the Fig 2.  
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Fig. 2. Laser scanning strategies for first few layers (XA - YA - XA - YA - XA indicates the XA, YA, XA, YA and XA are selected as laser 
scanning pattern for first to fifth layers respectively). 

LAAM related process parameters used in the simulation are given in Table 1. Using a 50 % overlap for 
deposition processes, the geometry of the unit domain in simulation is modified based on experimental 
calibration and given as 1.1×1.1×0.5 mm3.  

Table 1. Process parameters used in the proposed integrated model 

Laser related parameters Laser beam radius r 1×10-3 m 

 Initial laser power P 1.07×103 W 

 Laser scanning speed v  2×10-2 m/s 

 Laser absorptivity  0.42 (Song, Chew et al. 2018) 

Material related parameters Material properties  Stainless steel 316 

 Powder flow rate  16.6 g/min 

 Powder absorption rate 50% (Chew, Pang et al. 2015) 

 Powder initial temperature 1723 K 

 Overlap rate 50% 

Substrate related parameters  Substrate initial temperature 293 K 

2.2. Inter-layer temperature field prediction algorithm  

It is evident that the number of the laser scanning strategies increases exponentially with the increase of 
the depositing layers, making it immensely challenge to simulate every possible case and then select an 
appropriate one. Thus, this section illustrates the method used to efficiently consider the different cases. 
Under the condition of a constant process parameters, the machine learning algorithm predicts temperature 
field of the next layer using numerical results of current and previous layers. Using Pi for the laser scanning 
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pattern in layer i and Ti for temperature field for layer i after deposition, the proposed function can be 
described as f(Ti, Ti-1, Pi+1) →Ti+1. 

To normalize the temperature field generated by different dimensional cube, a feature extraction method 
is used to form a 10×10 matrix 𝑻𝑻𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊  to describe Ti. Each layer is decomposed into 10×10 blocks bm,n (m, n ∈ 
[1,10]), the element tm,n (m, n ∈ [1,10]) in the matrix Ti represents the mean temperature in the block bm,n. In 
the simulation, the temperature field is exported via a uniform mesh where unit cell is 0.1×0.1×h mm3 (h is 
the thickness of one layer). The number of temperature nodes in each block depends on the dimension of 
the depositing cube. The value of tm,n is computed by averaging the temperature of all the nodes in the block 
bm,n. The discretization of one-layer temperature field is illustrated in Fig 3.  

The temperature field matrix of the first layer 𝑻𝑻𝒕𝒕𝒕𝒕𝒕𝒕𝟏𝟏  deposited with laser scanning pattern Ppattern (pattern 
∈ (XA, XB, XC, XD, YA, YB, YC and YD)) also serves as matrix Tpattern to describe the laser scanning pattern 
Ppattern. The function f(Ti, Ti-1, Pi+1) →Ti+1 thus can be described as𝒇𝒇�𝑻𝑻𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊−𝟏𝟏 ,𝑻𝑻𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊 ,𝑻𝑻𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒊𝒊+𝟏𝟏 � → 𝑻𝑻𝒕𝒕𝒕𝒕𝒕𝒕𝒊𝒊+𝟏𝟏 . An TP-RNN 
model structure is designed to represent the function f. Besides the input layer and the output layer, the 
structure also contains an RNN hidden layer with 500 LSTM cells and a fully connected layer with 200 
neurons, as shown in Fig 4.  

 

The number of laser scanning patterns for depositing n layers is 4n-1. Therefore, this integrated finite 
element and machine learning model only requires the numerical simulation to perform ‘n’ number of 
simulation runs for building ‘n’ layers instead of 4n-1 simulation runs when considering all the possible 
permutations to select the optimal laser scanning pattern. The appropriate laser scanning pattern should be 
able to minimize the temperature distribution variance in each layer. The process parameters and materials 
properties are first imported to define the boundary and initial conditions in the numerical model. The laser 
scanning pattern for the first depositing layer is predefined to determine the simulation domain activation 
sequence. When one layer deposition simulation is completed, the temperature field for the next depositing 
layer is predicted via the RNN-DNN (Recurrent Neural Network-Deep Neural Network) model based on the 
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temperature field of deposited layer and potential laser scanning patterns. The outcome temperature field 
matrix 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖+1 are compared by calculating the temperature distribution variance. The laser scanning pattern 
providing the least variance would be selected for depositing the next layer. When the entire deposition 
simulation is completed, the selected laser scanning paths for each layer is the final output. 

The rectified linear unit (ReLU) is selected as the activation function in the neural network. The 
normalized mean square error (nMSE) is chosen as the evaluation metric as defined in Eq. (1), where 𝑦𝑦𝑖𝑖  is the 
ground truth temperature field matrix and 𝑦𝑦𝑖𝑖∗ is the predict temperature field matrix. The parameters of the 
model is optimized using Adaptive Moment Estimation (Adam) by back propagating the error at the output 
layer, as Adam updates adaptive learning rates for each parameter (Ruder 2016). In data preprocessing 
phase, the data was split into the training set and test set according to the ratio of 9:1. 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖∗)2𝑛𝑛
𝑖𝑖=1      (1) 

The nMSE on the training test and accuracy on the test set were recorded every epoch, where the 
accuracy is given in Eq. (2). The nMSE value decreases from over 100,000 to below 20,000 after 500 epochs 
while accuracy increases till over 90% after 100 epochs and 95.05% after 1000 epoch. The convergence 
suggest that the RNN-DNN model is able to fit the function 𝑓𝑓 well. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 1
𝑛𝑛
∑ �𝑦𝑦𝑖𝑖−𝑦𝑦𝑖𝑖

∗�
𝑦𝑦𝑖𝑖

𝑛𝑛
𝑖𝑖=1 × 100 %     (2) 

3. LAAM Simulation and Prediction Results 

The thermal history graphs prediction for the multi-layers deposition stimulations are illustrated in Fig. 5 
for the case where every layer starts from the same location. From the temperature distribution at the time 
instance where the deposition ends for each layer, it is observed that the extent of heat accumulation 
increases with increasing layers. The integrated model will attempt to optimized and minimize the heat 
accumulation effect. 

Fig. 5. Heat accumulation for scan paths which starts at same location for each layer.  
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To evaluate the proposed LAAM multi-layer scanning pattern planning frame, a 10-layer cube of SS316 is 
designed to be deposited at the center of a 5mm thickness substrate, as shown in left of Fig 1 above. The 
laser scanning pattern for the first layer is selected as XA. The laser scanning pattern selected using the 
integrated model is given in Table 2. It can be found that temperature distribution variance of the whole 
component decreases along with the increase of the deposition layers. Another observation is the suggested 
optimized starting point for the adjacent layers is located diagonally across the deposition area. This 
selection of raster scan starting points will help to increase the homogeneity of the temperature distribution 
of the printed part. In addition, it was also observed that the difference between the resulting temperature 
variance for different scanning patterns reduces with increasing deposition area. This is because the part has 
heated up considerably and cooling rate has reduced, causing slowly heat dissipation from the deposited 
layer. Hence, the effect of scanning pattern diminishes. At this point, another methods are required to 
reduce the heat accumulation for example, reducing laser power or allowing the part to cool down.  The 
melt-pool size for 5 layers deposition using the scanning pattern with the same starting point compared with 
the optimized scanning pattern is shown in Fig 6 below. It is observed that the melt-pool size can be reduced 
when the optimized scanning pattern is applied.  

 

Table 2. Laser scanning pattern and temperature distribution variance parameter.  

 Temperature distribution variance for next layer with different start point Selected pattern  
 Start at A Start at B Start at C Start at D  
Layer 2  160678.87 219906.78 186866.37 189526.36 YA 
Layer 3 196223.83 170150.00 169042.44 198204.41 XC 
Layer 4 108212.98 120929.94 128939.20 131719.36 YA 
Layer 5 106637.94 89879.52 93015.91 113621.02 XB 
Layer 6 47899.17 65012.92 53851.36 57207.22 YA 
Layer 7  66406.88 56727.36 56149.50 68143.32 XC 
Layer 8 43276.40 47019.70 50928.71 53603.76 YA 
Layer 9 43329.99 36833.33 36165.46 45151.60 XC 
Layer 10 30096.93 32648.92 35599.72 37955.91 YA 

4. Conclusion 

In the simulation evaluation, a five-layer cube is designed to be deposited on the center of the square 
substrate with 256 different laser scanning strategies. From this work, it is demonstrated that the integrated 
finite element and machine learning approach allow an efficient approach to go through all the possible 

Fig. 6. a) Thermal distribution for scanning pattern starting at position A for every layer and b) thermal distribution of optimized laser 
scanning pattern. 
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scanning pattern and select the one which enable a more homogeneous temperature distribution. The 
trained TP-RNN model is able to take temperature field of the current and previous numerical results 
thermal field as input and then predicts the temperature field of the next layer as output. Using the 
predicted output from the TP-RNN model, the optimized pattern for the next layer is selected and iteration 
to next layer continues. In addition, the developed TP-RNN model is able to fit the temperature field – laser 
scanning pattern function well. From the comparison of the size of the thermal contour around the melt-
pool after 5 layers, it can be observed that the optimized scanning pattern resulted in less heat accumulation 
around the melt-pool. As each layer is deposited, the effect on scanning pattern reduces as cooling rate 
reduces. In future work, the relative size between printed area and substrate, as well as laser power will be 
investigated to understand how these parameters affects selection of laser scan paths.  
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