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Abstract 

In this paper, supervised neural networks and support vector machines are used to predict the weld seam geometry in 
laser-assisted metal-plastic joints. The informative value was maximized by generalizing the training data to geometrical 
properties, material data and process parameters. The meaningfulness is determined by 10-fold cross-validation during 
the training process and different amounts of training data. Finally, referencing investigations on novel parameters were 
carried out to evaluate the informative value of the applied machine learning methods. 
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1. Introduction and state of the art 

Digitalization is gaining increasing importance in mechanical engineering and the closely related field of 
joining and welding technology. In addition to the networking of production facilities, digital services in the 
business model or the use of digital twins of products and facilities, Artificial Intelligence (AI) is a central 
issue. Especially for complex tasks in joining technology, AI techniques, e. g. machine learning, can be used to 
estimate process parameters for new materials, modified alloy compositions or sheet thicknesses.  
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Machine learning addresses the use of algorithms that improve automatically through experience 
(Mitchell, 2006). In recent years, several researchers have applied machine-learning methods for modeling 
mutual influence between process parameters in different laser manufacturing applications. Examples are 
given for process control (Günther et al., 2016, Stavridis et al., 2018) or quality assurance (Wasmer et al., 
2018, Knaak et al., 2018, Yuan et al., 2018). In each case, process data were used for training the machine 
learning technologies, e. g. acoustic signals, photodiodes, image data or x-ray data. Other approaches are 
focused on the investigation of combining machine-learning applications with numerical simulations of laser 
welding (Akbari et al., 2016). It should be noted, that a trained artificial intelligence produces the 
information within seconds in contrast to numerical simulation while licenses or material data are no 
mandatory requirement. Further investigations deal with the challenge to establish a valid relationship 
model between input and output parameters in laser-based processing of thermoplastics (Acherjee et al., 
2011). In addition, investigations have been carried out regarding the combination of different machine 
learning methods like neural nets and genetic algorithms (Liu et al., 2018) or Support Vector Regression (SVR, 
Petković, 2017) to optimize laser process parameters or predict geometry characteristics.  

Especially supervised feed forward network structures based on backpropagation learning approaches are 
well established (Balasubramanian et al., 2010, Sathiya et al., 2012, Nikolić et al., 2016, Jacques and 
Abderrazak, 2018). These types of artificial neural networks are powerful tools as they are suitable for 
problems, which are not amenable to exact analytical solutions. Large sets of parameter patterns can be 
stored as memories for the system, which can be recalled later. Furthermore, these techniques can reduce 
the dimensionality of the original data set to a simpler representation with fewer dimensions. The literature 
review demonstrates that the non-linear interrelations between input and output parameters, as they occur 
in laser welding processes, can be approximated.  

A novel application regarding laser welding is the prediction of weld seam geometries in order to provide 
information for new engineering constructions and components. In laser-assisted polymer-metal joining, the 
laser beam is absorbed at the metal surface and heat conduction across the interface between both 
materials leads to melting of the polymer (Fig. 1a, b). The surface of the metallic joining partner roughened 
by previous processes has nano- or micro-scale structures which can be wetted or filled by the molten 
polymer (Al-Sayyad et al., 2018, Heckert and Zaeh, 2014, Fig. 1b). Solidification creates a solid connection 
between the two materials when the laser beam is turned off after a certain time (tL, Fig. 1c). The resulting 
joining zone is mainly characterized by the melting layer in the thermoplastic material. On the one hand, the 
diameter of the melting zone and the temperature distribution influence the bonding surface between the 
two materials (Schricker and Bergmann, 2019). On the other hand, the material thickness of the plastic 
component is limited, e. g. for plastic carriers in household appliances. For this reason, the melt layer 
thickness must be considered as a predominant factor for the evaluation of process quality, since its size is 
not allowed to weaken the component structure. A further description of the melting layer and its effects on 
the joint is given in Schricker, 2018.  

Fig. 1. (a) Process start with metal and polymer in contact; (b) formation of the melting layer during; (c) joint after solidification 
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The implemented approach presented in this paper is based on the idea of combined application of 
process parameters and material specific parameters to an artificial neural network-based model with the 
goal to predict the geometry of welds in thermal joining of metals and polymers. Next to specific process 
parameters like laser power or welding time material-specific qualities and metallurgical properties of the 
joining parts like melting temperature, enthalpy or thickness are considered. Both experimental results as 
well as simulation data is used for training and validation of the applied machine learning technique while 
the quality of the welding joints is determined based on the geometrical parameter melting layer thickness. 

2. Methodical approach and experimental realization  

2.1. Experimental setup and materials  

The experiments were carried out using a diode laser (Laserline LDM 3000, λ = 980 nm) with a focal 
diameter of 5.3 mm and an applied beam power PL of 1,000 W. The processing optic and the clamping device 
were mounted on a three-axis portal. In terms of fundamental research, spot joints were manufactured in 
heat conduction joining. The overlap had a width of 100 mm and a length of 75 mm. Joining times (tL) from 
1 s up to 10 s were investigated. The distance between the clamping jaws was fixed at 50 mm to avoid heat 
accumulation. Aluminum EN AW 6082 with a thickness of 1.5 mm was used as metal joining partner. The 
surface of the metal sheet was used in the as-delivered state as the focus of the investigations is on the 
geometry of the melt zone and not on achievable strengths. Polyamide 6.6 with a thickness of 5 mm was 
chosen as polymeric joining partner in the main experiments. Additionally, polyamide 6 and polypropylene 
were used in the preliminary investigations. The thickness fulfills the requirement of the semi-infinite body in 
order to avoid heat accumulation within the thermoplastic material. Both joining partners were cleaned with 
isopropyl before the experiment. The experimental setup is shown in Fig. 2a.  

Fig. 2. (a) experimental setup; (b) melting layer thickness (tmelting layer) of the spot joint  

Based on the joining process, a melting layer forms in the thermoplastic joining partner. This area 
depends on the temperature distribution within both joining partners and shows different morphological 
zones (see also Schricker et al., 2015). The characteristic temperatures were described in Schricker and 
Bergmann, 2018 and Schricker, 2018. In the present case, only the starting temperature of the melting 
interval Tim (Tim, PA 6.6 ≈ 235 °C, Tim, PA 6 ≈ 191 °C, Tim, PP ≈ 126 °C) is considered, as it is responsible for the 
maximum extent of melting layer thickness respectively diameter. In order to describe the geometry of the 
weld seam, the melt zone thickness is used at this point (see Fig. 2b).  
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2.2. Numerical simulation 

A thermal model was used to determine the temperature distribution in both joining partners and thus 
also the melt zone thickness. The simulations were carried out using Comsol Multiphysics 5.2a. The 
characteristic temperature Tim was determined by differential scanning calorimetry. The material properties 
density, heat conductivity and specific heat were considered temperature dependent. The thermal analysis, 
the geometry and the boundary conditions are described in detail in Schricker and Bergmann, 2018 as well 
as in Schricker, 2018.  

Based on the valid numerical simulation, different laser beam powers (PL) and metal sheet thicknesses 
(tM) were examined to provide further data to train the machine learning algorithms.  

2.3. Application of machine learning  

The presented investigations were implemented using a feed forward multilayer neural network. Besides 
necessary input and output layer, the network is constructed with two additional hidden layers. Following 
the approach of supervised learning, the parallel processing network is trained with backpropagation for 
determining the complex relationships between input variables and to generate an associated output in 
response. Therefore, the initial weights and biases will be iteratively adjusted to increase the network 
performance and minimize the occurring mapping error (i.e. the residual mean square error, MSE). 

Based on preliminary testing with available experimental data, a valid and efficiently network structure 
was derived. Therefore, different number of models were evaluated concerning their prediction 
performance is based on the principle of reducing statistical characteristics like sum of squared errors (SSE), 
the residual root mean square error (RMSE) as well as the coefficient of determination (R²).  

Fig. 3. Schematic structure of the applied neural network structure 

As shown in the schematic in Fig. 3, the network consists of neurons, which are completely connected to 
each following neuron of the adjacent layer. The output of each layer will be defined by the sum of input 
signals and their related weights, the threshold value as well as the defined activation function. Tan-sigmoid 
functions were applied in the hidden layers and transfer functions in the input and output layer. The output 
of the network therefore results as it is shown in Eq. 1, where 𝑓𝑓𝑎𝑎𝑎𝑎𝑎𝑎 is the activation function for the 
considered layer and 𝛼𝛼,𝛽𝛽, 𝛾𝛾 are the specific weights with regard to the preceding layer. The network 
performance is significantly influenced by the number of hidden layers and neurons in these hidden layers. 
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In this paper the used network structure consists of 12 neurons in the input and first hidden layer, as well 
as 6 neurons in the second hidden layer and one output neuron in the output layer. This network 
architecture turned out as especially powerful and less prone to errors dealing with the provided 
experimental data and simulated data sets as a result of preliminary tests.  

 
 

  (1) 

 
The gained results were compared to a support vector regression (SVR). Thereby a nonlinear mapping of 

data into defined feature spaces is used in which a linear separation becomes possible. The application of a 
so-called kernel function is required to map the data to the higher dimensional feature space. For this 
investigations, a radial basis kernel function depicted in Eq. 2 is used. 

 

  (2) 

The results were evaluated based on the statistical indicators of mean-absolute error (MAE), root-mean-
square error (RMSE) and coefficient of determination (R²) (see Eq. 3, Eq. 4 and Eq. 5) where 𝜙𝜙𝑝𝑝 and 𝜙𝜙𝑞𝑞 are 
the predicted and original values over the total number of considered data points n.  
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3. Results and Discussion  

3.1. Melting layer in thermal joining  

The melting layer thickness over joining time tL is given in Fig. 3 for the experiment and the numerical 
simulation. The melting layer thickness increases from approx. 90 µm after a joining time of 1 s to approx. 
530 µm after a joining time of 10 s. The course of simulation and experiment follows the same characteristics 
of an exponential function. The relationship is correctly represented by the simulation and the deviation of 
the melting layer thickness between simulation and experiment is mainly within the empirical standard 
deviation. A maximum deviation in melting layer thickness is 9.9 % at a joining time of 1 s which corresponds 
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to an absolute deviation of 8.8 µm. The diameter of the melting layer also corresponds very well to the 
experiment, as already explained in Schricker and Bergmann, 2018.  

The high agreement between simulation and experiment allows to provide further data for the training of 
the AI by numerical simulation, e. g. by varying the material thickness (tM) or the laser beam power (PL).  

Fig. 4. Comparison of experiment and numerical simulation for melting layer thickness (PL = 1.000 W)  

3.2. Investigations on different machine learning algorithms and prediction of the melting layer thickness 

The initial test aims at the performance of a feed forward multilayer neural network applied to the 
available experimental data. In this database the process parameters as well as the used sheet metal remain 
constant (EN AW 6082), while the used material parameters for plastic components (PA6, PA6.6, PP) vary. 
Different joining times in the range from 1 s up to 10 s are considered. The data sets were taken from 
experimental investigations only.  

The available dataset consists of 84 instances and 12 attributes. Eight instances are randomly selected for 
future testing while the rest is used for training. The 10-fold cross-validation is used to train the network, 
while each fold takes 0.82 s computing time in single core mode for the defined maximum number of 2,000 
iterations for the backpropagation cycle. After a training and validation time of about 10 s, the network is 
trained and can be applied to the test set. The results require a computational time of less than 0.01 s. The 
training and testing data are also applied to SVR in comparison. The results are illustrated in Fig. 5 and Tab. 1 
for MLP (a) and SVR (b). The histogram plots as well as their related frequency tables are given over the error 
class margin, which expresses the deviation from the target melt layer thickness. The results demonstrate, 
that the neural net reaches a lower error compared to the applied SVR-method. In 90 % of the cases, the 
error is less than 40 μm in a total range of target attribute values between 0 up to 850 μm. The SVR shows a 
lower accuracy since only 76 % of the predicted values have an error of equal or less than 40 μm. In three 
cases, the error increases to over 100 µm, which could not be determined with MLP. The performance of 
both procedures at the testing data is also considered in more detail. The predicted deviation to the original 
value (Fig. 5c) as well as the actual error (Fig. 5d) are indicated. These diagrams illustrate that the neural net 
as well as the SVR method predicts the original test values well, whereby the MLP shows a better 
performance, which becomes apparent in conjunction with the values for MAE and RMSE in Tab. 1. 
Moreover , in most cases the neural net prediction seems to be lower than the real values. This cannot be 
observed for the results made by the SVR.  

6



 LiM 2019 

Fig. 5. Training histogram for MLP (a) and SVR (b); deviation of the MLP and SVR result to the original value (c); actual error of MLP and 
SVR result (d)  

Table 1. Statistical indicators for training and test of the MLP and SVR  

Machine learning system Data set R² / 1 MAE / µm RMSE / µm 

MLP Training  0.9923 18.6617 23.8066 

 Test 0.9944 20.3154 24.0014 

SVR Training 0.9744 29.9569 43.6112 

 Test 0.9833 27.2241 32.5440 

3.3. Prediction of the melting layer thickness  

In the following chapter, the experimental data were replaced by computationally generated data sets 
and calculated based on the shown MLP. Therefore, a valid model is available as shown in chapter 3.1 which 
allows the supplement of several data sets depending on process variables, material data and geometrical 
parameters. Based on this simulation, a large number of consistent and accurate data of the melting layer 
can be provided. A further advantage is the short computational times of each data point of approx. one 
minute at four cores. The next step is to evaluate the neural network performance in the task of 
interpolation and extrapolation of specific prediction points based on a strictly simulated training set. 
Therefore, the training data set consists of 30 instances with variations in the attribute of sheet metal 
thickness (tM = 1.5 mm, 2.0 mm, 2.5 mm). The introduced laser power (PL = 1,000 W) as well as the applied 
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thermoplastic material (PA 6.6) remains constant. The maximum number of training iterations at each cross-
validation fold is raised slightly up to 5,000. The training time per fold is around 0.69 s as a consequence of 
the low number of training instances. After a total time of 7 s, the network is trained and can be used for 
testing. The applied test data consists of two data points for sheet metal thickness of tM = 1.0 mm 
(extrapolation) and tM = 1.7 mm (interpolation) which were not part of the training data. The results are 
shown in Fig. 6. Based on the limited amount of training data, the MLP shows a high level of agreement for 
the interpolation at tM = 1.7 mm with a deviation below 1 %. For the approximation of the sheet thickness 
(tM = 1.0 mm), the deviation increases to approx. 7 % which represents an actual error of 39 µm. The 
computed data point by the MLP is pulled towards the lower sheet thicknesses used in the training of the 
neural net. Nevertheless, a reasonable forecast is achieved.  

Fig. 6. Data sets for training, interpolation and extrapolation for the MLP (PL = 1,000 W, tM = var.)  

This is followed by an extension of simulated training data for different laser beam powers as well as 
varied metal sheet thicknesses. The prediction of different parameters is given in Fig. 7 for an extrapolated 
joining time of 12 s based on different parameters. The results differ greatly from each other. For the 
interpolation of the large material thickness (tM = 2.3 mm), few training points are available resulting in a 
large error. For the lower material thicknesses (tM = 1.7 mm) the predictions are much more precise.  

Fig. 7. Data sets for training and extrapolation for the MLP (PL = var., tM = var.)  

8



 LiM 2019 

From this it can be concluded that the quality of the results depends strongly on the training data and 
their volume. The present attempt to achieve sufficient results on the basis of less training data is 
nevertheless positive, since the results achieved in Fig. 7 could be represented on the basis of only 50 
training sets.  

3.4. Interpolation and extrapolation of weld seam geometries  

Furthermore, a statement to the type or direction of error is to be achieved. The training set consists of 
20 instances, generated with numerical simulation, with constant process parameters for the metal sheet 
thicknesses of 1.5 mm and 2.0 mm. The trained MLP should then predict the material thickness of 1.7 mm 
(Fig. 8a). The MLP reaches a RMSE of 12.764 µm and shows a good qualitative and quantitative agreement 
with the curve. Fig. 8b shows the actual error between MLP prediction and test data for each examined 
joining time. It is noticeable that melting layer thicknesses are usually predicted to be too small, although the 
1.7 mm are closer to the training data of 1.5 mm than to 2.0 mm.  

Fig. 8. Melting layer thickness for different metal sheet thicknesses and interpolation of an untrained sheet thickness (a); actual error of 
the MLP compared to the test data (b)  

4. Conclusion 

The aim of this paper is to demonstrate the capabilities of feed forward neural networks trained with back 
propagation as a powerful tool for the determination of the weld seam geometry in terms of melting layer 
thickness in laser-assisted joining of metal-plastic hybrids. Therefore, data sets based on experiments as well 
as numerical simulation are used. Support vector regression (SVR) is deployed as a method of comparison 
and the statistical parameters of mean absolute error (MAE), residual root mean square error (RMSE) as well 
as coefficient of determination (R²) are applied to enable a quantitative evaluation of the training and 
validation process. The achieved results indicate excellent agreement between the training data and the 
predicted values which confirms an excellent performance of the used model. The application of such 
machine learning methods allows the generation of models which are able to accurately provide an 
appropriate prediction of geometrical welding parameters and has the potential to minimize the time and 
cost expense of further experimental or numerical investigations.  
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