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Abstract 

Laser weld monitoring is usually based on the feedback from sensors (photodiodes, cameras) able to provide 
information about radiation from plume, the reflected laser light and the thermal condition of the melt. By using the 
optical emissions, it is possible to evaluate laser process quality, in particular, to find out the relationship between 
emission characteristics and weld quality characteristics. However, the optical signals detected during the laser welding 
are typically contaminated by different kind of noises that affect the sensor. To avoid this phenomenon, it is necessary to 
de-noise the signal for getting a “clean” signal. A plethora of inspection systems have being developed to improve weld 
quality and reduce overall costs. However, the signal analysis technique to be applied, for inferring information about 
the condition of the weld, is still an open field. This work presents a technique based on an adaptive method for cleaning 
up the signal, named Modified Singular Spectrum Analysis (MoSSA), combined with the Teager-Huang Transform (THT) 
for better inferring information about the condition of the weld. The proposed technique significantly improves 
components localization. For giving practical applicability to the proposed method, we compare the methods by 
analyzing signals detected during the laser welding, demonstrating the expected advantages. 
 
Keywords: singular spectrum analysis; transient signal analysis; Teager Kaiser energy operator; 

1. Introduction 

Laser welding is increasingly used in industrial applications, because of the advantages it offers, such as high 
speed, high accuracy, low heat input and low distortion. As for any other fusion welding process, weld 
imperfections can occur. In the automotive industry, for instance, the demand for real-time monitoring 
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methods has become increasingly urgent since for reducing vehicle weight and improve fuel efficiency and 
safety, the development of lightweight and high-strength vehicles has prompted an increased use of 
advanced high strength steels (AHSS). These steels are galvanized in order to improve the surface corrosion 
resistance for automotive parts. It is still a great challenge the laser weld of galvanized steels in a zero-gap 
lap joint configuration. When laser welding of galvanized steels in a zero-gap lap-joint configuration, the zinc 
coating at the contact interface will vaporize; due to the lower boiling point (906 0C) of zinc as compared to 
the melting temperature of steel (above 1500 0C), the highly pressured zinc vapour expels the liquid metal 
out of the weld pool, resulting in blowholes and pores which dramatically decrease the mechanical 
properties of the weld [1-10].  
Most common techniques in use today for process monitoring, employ sensors to record electromagnetic 
(EM) signals arising from the molten pool during welding, with the objective of correlating the output from 
the sensor to features such as weld penetration, the occurrence of pin holes, or weld shape. These systems 
have been developed to monitor laser welding in real-time and generally examine the laser-to-metal 
interactions to infer the quality of the weld itself. 
By using different types of sensors, responding to different wavelengths of light, different aspects of the 
process or weld can be monitored, such as the weld pool temperature, the plasma above the weld pool and 
the level of back reflection, for instance. Through the optical emissions, it is possible to evaluate laser 
process quality, in particular, to find out the relationship between emission characteristics and weld quality 
characteristics.  
Since these techniques are indirect, they require accurate signal interpretation and processing to infer 
information about the actual condition of the weld: the more accurate signal analysis technique, the better 
weld quality characterization [11-16]. 
Many signal analysis methods have been developed. These methods include, as example, power spectrum 
estimation and fast Fourier transform (FFT). However, these methods are based on the assumption of 
stationarity and linearity of the detected signals. Unfortunately, laser welding defects by their nature are 
time-localized transient events. To deal with non-stationary and nonlinear signals, time-frequency analysis 
techniques such as the Short-Time Fourier Transform (STFT) , Wavelet Transform (WT), Wigner-Ville 
distribution (WVD) are used [17-51]: 
• the drawback with the STFT is the limitation between time and frequency resolutions 
• the limitation of the wavelet analysis is its non-adaptive nature 
• the difficulty with the WVD is the severe cross terms as indicated by the existence of negative power for 

some frequency ranges. 
In this study, a new method has been developed for finding out the relationship between emission 
characteristics and weld quality characteristics. The developed method is based on Orthogonal Empirical 
Mode Decomposition (OEMD) and Teager–Kaiser Energy Operator (TKEO) algorithms [52-60]: 
• the OEMD theory, developed by Huang and improved by CRF, decomposes the signal into a set of band-

limited functions (orthogonal intrinsic mode functions, IMFs) and allows the extraction of instantaneous 
information from the signal.  

• the Teager Kaiser energy operator estimates the instantaneous frequency and amplitude of the signal.  
Figure 1 shows the algorithm blocks diagram using the OEMD and TKEO theories, on which, as example,  the 
defects detection approach is based. 
However, the optical signals detected during the laser welding are typically contaminated by different kind 
of noises that affect the photo-detector. To avoid this phenomenon, it is necessary to smooth and de-noise 
the signal for getting a “clean” signal. Although several methods have been developed to reduce the effect 
of noise, one of the most effective methods of dealing with noise contamination is to filter the noise out of 
the signal while retaining as much as possible of the region of interest in the frequency spectrum.  
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The traditional method to de-noise process signals is to use digital Butterworth filters. Nonetheless, more 
advanced filtering techniques such as discrete wavelet transforms, Wiener filtering have also been used to 
that end. Although these methods have proven useful, their main drawback is the complexity of devising an 
automatic and systematic procedure, i.e., a mother wavelet function must be selected when using discrete 
wavelet transforms, the filtering function parameters must be chosen when using the Wiener filter, etc. 
Singular spectrum analysis (SSA) is a novel non-parametric technique based on principles of multivariate 
statistics. The original time series is decomposed into a number of additive time series, each of which can be 
easily identified as being part of the signal, or as being part of the random noise. This way it's possible to get 
a clean signal without noise [61-65]. The SSA method is based on two parameters, window length and 
number of eigenvectors, which has to be set before starting the de-noising procedure. Certain choices of 
window lengths and number of eigenvectors (grouping strategy) lead to poor separation between trend and 
noise in the signal, i.e., trend components become mixed with noise components in the reconstruction of 
the signal.  
The Modified Singular Spectrum Analysis (MoSSA) method, developed by CRF, overcomes the previous 
drawbacks and is intended to be a valid alternative to traditional digital filtering methods. 
The purpose of this paper is to show how the application of OEMD and TKEO algorithms to properly 
denoised signals, allows to evaluate  the quality of laser welded components without using any signal as 
reference. 
The organization of this paper is as follow:  
• Section I, reports the Modified Singular Spectrum Analysis (MoSSA) 
• Section II, briefly presents the Orthogonal Empirical Mode Decomposition (OEMD) and the Teager–Kaiser 

Energy Operator (TKEO) methods  
• Section III finally,  illustrates the application of the OEMD & TKEO analysis to the signals detected during 

the welding of Ni 718 –BoP material, demonstrating its applicability to the proposed method. 

Fig.1. Algorithm blocks diagram using the OEMD and TKEO theories 
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2. Modified Singular Spectrum Analysis (MoSSA) method 

2.1 Singular Spectrum analysis (SSA) 

The main purpose of SSA is to decompose the original series into a sum of series, so that each component 
in this sum can be identified as either a trend, periodic or noise. This is followed by a reconstruction the 
original series. The SSA technique consists of two complementary stages: decomposition and reconstruction 
and both of which include two separate steps. At the first stage we decompose the series and at the second 
stage we reconstruct the original series and use the reconstructed series which is without noise. We provide 
a discussion on the methodology of the SSA technique. We consider the real-valued nonzero time series of 
sufficient length T 𝑌𝑌𝑇𝑇=(𝑦𝑦1….𝑦𝑦𝑇𝑇). Fix 𝐿𝐿 (𝐿𝐿≤𝑇𝑇/2), the window length, and let 𝐾𝐾=𝑇𝑇−𝐿𝐿+1. 

Step 1 - Computing the trajectory matrix (Embedding)  
This transfer a one-dimensional time series 𝑌𝑌𝑇𝑇=(𝑦𝑦1…..𝑦𝑦𝑇𝑇) into the multi-dimensional series 𝑋𝑋1……𝑋𝑋𝐾𝐾 with 
vectors 𝑋𝑋𝑖𝑖=(𝑦𝑦𝑖𝑖….𝑦𝑦𝑖𝑖+𝐿𝐿+1) ∈ 𝑅𝑅𝐿𝐿, where 𝐾𝐾=𝑇𝑇−𝐿𝐿+1.  
The single parameter of the embedding is the window length L, an integer such that 2 ≤ L ≤ T .  
The result of this step is the trajectory matrix or Hankel matrix, (all the elements along the diagonal 
𝑖𝑖+𝑗𝑗=𝑐𝑐𝑜𝑜𝑛𝑛𝑠𝑠𝑡𝑡 are equal) 
 

𝑿𝑿 = �𝑥𝑥𝑖𝑖,𝑗𝑗�
𝑖𝑖,𝑗𝑗=1
𝐿𝐿,𝐾𝐾 = �

𝑦𝑦1 𝑦𝑦2 … . . 𝑦𝑦𝑘𝑘
𝑦𝑦2 𝑦𝑦3 … . . 𝑦𝑦𝑘𝑘+1

… . . … . . … . . … . .
𝑦𝑦𝐿𝐿 𝑦𝑦𝐿𝐿+1 … . 𝑦𝑦𝑇𝑇

� (2.1) 

 
Step 2 - Singular value decomposition of the trajectory matrix  
It can be proved that the trajectory matrix (or any matrix of that type) may be expressed as the sum of 𝑑𝑑 
rank-one elementary matrices 𝑿𝑿 = 𝐸𝐸1 + 𝐸𝐸1 + ⋯ 𝐸𝐸𝑑𝑑, where 𝑑𝑑 is the number of non-zero eigenvalues in 
decreasing order, 𝜆𝜆1,𝜆𝜆2,…𝜆𝜆𝑑𝑑 of the 𝐿𝐿𝑥𝑥𝐿𝐿 matrix 𝐒𝐒=𝑿𝑿∙𝑿𝑿𝑻𝑻.  
The elementary matrices are given by:  
 

𝑬𝑬𝒊𝒊 = �𝜆𝜆𝑖𝑖 ∙ 𝑼𝑼𝒊𝒊 ∙ 𝑽𝑽𝒊𝒊 ∙ 𝑻𝑻 (2.2) 
 

for 𝑖𝑖=1,2,….,𝑑𝑑, with 𝑼𝑼𝟏𝟏,𝑼𝑼𝟐𝟐,…,𝑼𝑼𝒅𝒅 being the corresponding eigenvectors, and the vectors 𝑽𝑽𝒊𝒊 being given by: 

𝑽𝑽𝑖𝑖 = 𝑿𝑿𝑻𝑻 ∙ 𝑼𝑼𝒊𝒊 ∙ (𝜆𝜆𝑖𝑖)−1 (2.3) 

for 𝑖𝑖=1,2,….,𝑑𝑑 .The contribution of the first elementary matrices 𝑬𝑬𝒊𝒊 to the norm of 𝑿𝑿 is much greater than that 
of the last matrices. Therefore, it is likely that these last matrices represent noise in the signal. The plot of 
eigenvalues in decreasing order is called the singular spectrum, and gives the method its name. 

 
Step 3 - Grouping  
The next step consists in partitioning the set of indices {1,…,} into 𝑚𝑚 disjoint subsets: 𝐼𝐼1,…,𝐼𝐼𝑚𝑚. Let 𝑰𝑰=𝑖𝑖1,…, be one 
of these partitions. Then, the trajectory matrix 𝑬𝑬𝑰𝑰 corresponding to the set 𝑰𝑰 is defined as 𝐸𝐸𝐼𝐼=𝐸𝐸𝑖𝑖1+ +𝐸𝐸𝑖𝑖2+⋯𝐸𝐸𝑖𝑖𝑏𝑏. 
Once the matrices have been calculated for the partitions established, 𝐼𝐼1,…,𝐼𝐼𝑚𝑚, the original time series 
trajectory matrix can be expressed as the sum of the trajectory matrices corresponding to each partition: 
𝑿𝑿=𝐸𝐸𝐼𝐼=𝐸𝐸𝐼𝐼1+ 𝐸𝐸𝐼𝐼2+⋯𝐸𝐸𝐼𝐼𝑏𝑏. 
 
Step 4 - Reconstruction (diagonal averaging)  
In this step, each trajectory matrix 𝑬𝑬𝒊𝒊 is transformed into a principal component of length 𝑵𝑵 by applying a 
linear transformation known as diagonal averaging or Hankelization. To reconstruct each principal 
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component, the average along the diagonals 𝑖𝑖+𝑗𝑗=𝑐𝑐𝑜𝑜𝑛𝑛𝑠𝑠𝑡𝑡 is calculated. The diagonal averaging algorithm 
(Golyandina) is as follow: let 𝑌𝑌 be any of the elementary matrices 𝑬𝑬𝒊𝒊 of dimension 𝐿𝐿𝑥𝑥𝐾𝐾, the elements of 
which are 𝑦𝑦 , with 1≤𝑖𝑖≤𝐿𝐿 ,1≤𝑗𝑗≤𝐾𝐾.  
The time series 𝑮𝑮 (principal component) corresponding to this elementary matrix is given by: 
 

𝑔𝑔𝑘𝑘 =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 

1
𝑘𝑘 + 1

� 𝑦𝑦𝑚𝑚,𝑘𝑘−𝑚𝑚+2                                      𝑓𝑓𝑓𝑓𝑓𝑓 0≤𝑘𝑘<𝐿𝐿∗−1  

𝑘𝑘+1

𝑚𝑚=1

 

1
𝐿𝐿∗ � 𝑦𝑦𝑚𝑚,𝑘𝑘−𝑚𝑚+2                                               𝑓𝑓𝑓𝑓𝑓𝑓 𝐿𝐿∗−1≤𝑘𝑘≤ 𝐾𝐾∗

𝐿𝐿∗

𝑚𝑚=1

1
𝑁𝑁 − 𝐾𝐾

� 𝑦𝑦𝑚𝑚,𝑘𝑘−𝑚𝑚+2          𝑓𝑓𝑓𝑓𝑓𝑓 𝐾𝐾∗≤𝑘𝑘<𝑁𝑁

𝑁𝑁−𝑘𝑘∗+1

𝑚𝑚=𝐾𝐾−𝑘𝑘∗+2

 

 

where L*=𝑚𝑚𝑖𝑖𝑛𝑛(𝐿𝐿,𝐾𝐾), K*=𝑚𝑚𝑎𝑎𝑥𝑥(𝐿𝐿,𝑘𝑘), and 𝑁𝑁=𝐿𝐿+𝐾𝐾−1. 
 
It can be shown that the squared norm of each elementary matrix equals the corresponding eigenvalue, and 
that the squared norm of the trajectory matrix is the sum of the squared norms of the elementary matrices. 
The largest eigenvalues in the singular spectrum represent the high-amplitude components in the 
decomposition. Contrariwise, the low-amplitude noise components of the signal are represented in the 
singular spectrum by the smallest eigenvalues. 

2.2 Modified Singular Spectrum analysis (MoSSA) 

One of the drawbacks of SSA is the lack of a general criterion to select the values of the parameters L 
(window length) and the grouping strategy used in the algorithm.  
Certain choices of window lengths and grouping strategy lead to poor separation between trend and noise 
in the signal, i.e., trend components become mixed with noise components in the reconstruction of the 
signal.  
To overcome the uncertainty in what value 𝐿𝐿 to select, we apply sequentially the Singular Value 
Decomposition step, starting from L=3: 
 

• for each iteration, the RMS between the current and previous eigenvalue is calculated  
 

𝑅𝑅𝑅𝑅𝑅𝑅(1) = 𝑟𝑟𝑟𝑟𝑟𝑟(𝜆𝜆1: 𝜆𝜆2)
𝑅𝑅𝑅𝑅𝑅𝑅(2) = 𝑟𝑟𝑟𝑟𝑟𝑟(𝜆𝜆2: 𝜆𝜆3) 

                 ⋮ 
𝑅𝑅(𝐿𝐿−1)=𝑟𝑟𝑚𝑚𝑠𝑠( 𝜆𝜆𝐿𝐿−1:𝜆𝜆𝐿𝐿) 
 

• the minimum and its position is calculated based on defined halt criterion at iteration  
[𝑚𝑚𝑖𝑖𝑛𝑛,𝑝𝑝𝑜𝑜𝑠𝑠𝑚𝑚𝑖𝑖𝑛𝑛]=𝑚𝑚(𝑅𝑅𝑀𝑀𝑆𝑆(1:𝐿𝐿−1))<𝜀𝜀=1/100 
 

The convergence of this sequential procedure is such in that the percentage RMS difference between the 
current and previous signals in a given iteration is sufficiently small. 
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2.3 Application to laser welding process signals 

The aim of this section is to demonstrate how the proposed method effectively smooths the signals detected 
during the laser welding. The data acquisition was performed with a NI CompactRIO multi-channel data 
acquisition board. High Strength Steel DP600 has been used for the trials. We firstly apply the Singular 
Spectrum Analysis, highlighting its own drawback, after that we demonstrate the effectiveness of the 
modified version. 
 
Example #1 – Welding of High Strength Steel DP600 – overlapped samples, sampling frequency 32768 Hz 

Figure 2 displays the signal (left) detected during the laser welding of overlapped HSS samples and the 
relative spectrum (right). Figure 3 displays up-left) de-noised signal, up-right) de-noised signal spectrum, 
bottom-left) residual noise, bottom-right) noise spectrum 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It should be noted, looking at the spectra shown in figure 3, the separation between the spectra. This 
condition ensures that the de-noised signal is not contaminated by noise. The Modified Singular Spectrum 
analysis method allows the smoothing of the signal without fixing any initial conditions. 

3. Orthogonal Empirical Mode Decomposition (OEMD) method 

The Empirical Mode Decomposition (EMD) has an assumption that any data consists of different simple 
intrinsic models of oscillations. Each intrinsic mode, no matter linear or not, represents an oscillation, which 
will have the same number of extrema and zero-crossings, and then the oscillation will be symmetric with 
respect to the local mean. Usually, the data may have many different oscillations which can be represented 
by the intrinsic mode functions (IMF) with following definition: 
• in the whole dataset, the number of extrema and the number of zero-crossings must either equal or 

differ at most by one, 
• at any point, the mean value of the envelope defined by the local maxima and the envelope defined by 

the local minima is zero. 
An IMF is much more general than an oscillation mode because it has a variable amplitude and frequency as 
a function of time.  

Fig.2. (up-left) raw signal, (bottom-left) spectrum, (right) denoised signal and noise 
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The components of the EMD are usually physically meaningful, for the characteristic scales are defined by 
the physical data.  

3.1 Orthogonal Empirical Mode Decomposition Method (OEMD) 

The EMD approach proposed by Huang can’t ensure strict orthogonality in theory, and only indicate 
approximately orthogonality among each IMF in numerical value. Actually from some numerical examples 
we can find the degree of orthogonality is relatively imprecise. Leakage of energy will be happened if we 
estimate the local spectral density of non-stationary signals detected during the laser welding, and then the 
local spectral density cannot be regarded as the time-dependent spectral density of original signals.  
To ensure the rigorousness of EMD, the IMFs from EMD should reconstruct the original signal. The IMFs can 
theoretically reconstruct the original signal. In order to check the orthogonality of IMFs from EMD, Huang et 
al. defined an overall index of orthogonality 𝐼𝐼𝐼𝐼𝑇𝑇  and a partial index of orthogonality for any two 
components  𝐼𝐼𝐼𝐼𝑗𝑗𝑗𝑗  , as follows: 

𝐼𝐼𝐼𝐼𝑇𝑇 = � � � 𝑐𝑐𝑗𝑗(𝑡𝑡)
𝑇𝑇

0

𝑛𝑛+1

𝑘𝑘=1
𝑘𝑘≠𝑗𝑗

𝑛𝑛+1

𝑗𝑗=1

𝑐𝑐𝑘𝑘(𝑡𝑡)𝑑𝑑𝑑𝑑 � 𝑥𝑥2(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑇𝑇

0
� =  � � � 𝑐𝑐𝑗𝑗𝑗𝑗𝑐𝑐𝑘𝑘𝑘𝑘

𝑁𝑁

𝑖𝑖=1

𝑛𝑛+1

𝑘𝑘=1
𝑘𝑘≠𝑗𝑗

𝑛𝑛+1

𝑗𝑗=1

� 𝑥𝑥𝑖𝑖
2

𝑁𝑁

𝑖𝑖=1

�                           (3.1) 

𝐼𝐼𝐼𝐼𝑘𝑘 = � 𝑐𝑐𝑗𝑗(𝑡𝑡)𝑐𝑐𝑘𝑘(𝑡𝑡)
𝑇𝑇

0
� 𝑐𝑐𝑗𝑗

2
𝑇𝑇

0
(𝑡𝑡)𝑑𝑑𝑑𝑑 + � 𝑐𝑐𝑘𝑘

2
𝑇𝑇

0
(𝑡𝑡)𝑑𝑑𝑑𝑑� = � 𝑐𝑐𝑗𝑗𝑗𝑗𝑐𝑐𝑘𝑘𝑘𝑘

𝑁𝑁

𝑗𝑗=1
� 𝑐𝑐𝑗𝑗𝑗𝑗

2
𝑁𝑁

𝑖𝑖=1
+ 𝑐𝑐𝑘𝑘𝑘𝑘

2�                                      (3.2) 

Furthermore, we defined an energy index to indicate the orthogonality of IMF components. The energy of 
original signal 𝐸𝐸𝑥𝑥  and the energy of each IMF component are given by: 

𝐸𝐸𝑥𝑥 = ∫ 𝑋𝑋2(𝑡𝑡)𝑑𝑑𝑑𝑑 = ∑ 𝑋𝑋𝑖𝑖
2𝑁𝑁

𝑖𝑖=1
𝑇𝑇

0                 (3.3) 

𝐸𝐸𝑗𝑗 = ∫ 𝑐𝑐𝑗𝑗
2(𝑡𝑡)𝑑𝑑𝑑𝑑 = ∑ 𝑐𝑐𝑗𝑗

2 (𝑗𝑗 = 1, … , 𝑛𝑛 + 1)𝑁𝑁
𝑖𝑖=1

𝑇𝑇
0                (3.4) 

If the IMF components from EMD are exactly orthogonal to each other, the value of  𝐼𝐼𝐼𝐼𝑇𝑇  should be zeros, 
the total energy of decomposed signal 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡  should be invariable and the energy leakage between any two 
IMF components 𝐸𝐸𝑗𝑗𝑗𝑗  should be zero. Generally, because the IMFs from EMD aren’t theoretically orthogonal, 
the value of orthogonality index is about from 10-2 to 10-3. Therefore, Huang considered that there is almost 
orthogonal among IMFs.  
However, numerical simulation demonstrated that owing to the minor error in orthogonality that Huang 
considered, there is actually severe energy leakage when applied EMD for the decomposition of time signals.  
In order to ensure the exact orthogonality of IMFs from EMD and no energy leakage due to EMD, a new 
method based on the Gram-Schmidt orthogonalization method referred as the orthogonal empirical mode 
decomposition (OEMD) has been proposed to improve the problem.  
In order to demonstrate the orthogonality validity of IMF from EMD to OEMD, let’s consider, as example, a 
temperature signal detected during the laser welding of polymers.  
Table I shows the value of the orthogonality indexes for IMF and OIMF.   

 
 

Table I: Orthogonality index of IMF / OIMF components 
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Comparing the indexes between IMF and OIMF, we can see that the orthogonalization process has provided 
the expected  results. The IMFs indexes match with the Huang  theory (the value of orthogonality index is 
about from  10-2 to 10-3, whereas the OIMFs indexes are closed to zero, as expected.  
 
Table II shows the energy leakage between any pair of  IMF components: without orthogonalising the IMFs, severe leakage is present.  

 
 
 
 
 
 
 

3.2 Teager–Kaiser Energy Operator (TKEO) method  

Signals may represent a broad variety of phenomena. In many applications, signals are directly related to 
physical quantities capturing energy and power in a physical system. The concept of signal energy is of 
primary importance in the design of continuous and discrete domain systems. This work is interested in 
signals provided by sensors and thus, to the energy associated with these signals. In the real world, we 
always transmit signals with finite total energy 0 < Ex < +∞ (or with finite average power) representing the 
amount of energy contained in signal x(t). The quantity Ex should be independent of the method used to 
calculate it. Engineers refer to such signals as having finite total energy, although Ex is not necessarily the 
physical energy of the signal x(t). For example, the total energy of the source system modeled as a mass 
suspended by a spring of a constant stiffness required to produce a simple undamped harmonic oscillation is 
calculated by the sum of the kinetic energy of the mass and the potential energy in the spring. By studying 
the second order differential associated to this harmonic oscillator, it is easy to show that a simple sinusoidal 
varies as a function of both amplitude and oscillation frequency of the signal x(t), which is quite different 
from simple squaring of the signal magnitude, x2(t). It is this source modeling that is used for characterizing 
x(t) by amplitude and frequency. 
In their work on non-linear speech modeling, Herbert and Shushan Teager pointed out the dominance of 
modulation as a process in the speech production [8,9]. Based on the Teager’s work, Kaiser proposed an 
energy measure that includes both the amplitude and the frequency of the signal [3]. This measure is often 
referred to as the Teager–Kaiser (TK) energy operator. Using the conventional view of the energy, it is easy 
to see that two tones at 10 Hz and 1000 Hz of unit-amplitude have the same energy. 
However, the energy required to produce the signal of 1000 Hz is much greater than that for the 10 Hz 
signal. Using TK definition of energy, the two tones show different energy. This definition highlights the 
concept of signal energy from the point of view of the generation of the signal and emphasizes the 
importance of analyzing signals from the energy aspect of the system needed to produce them.  
The Teager-Kaiser Energy Operator (TKEO), Ψ[. ], in the discrete case, is defined as: 
 
Ψ𝑑𝑑[𝑥𝑥(𝑛𝑛)] = 𝑥𝑥𝑛𝑛

2 − 𝑥𝑥𝑛𝑛+1 𝑥𝑥𝑛𝑛−1         (3.6) 
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4. Application of OEMD & TKEO to de-noised signals  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

OIMF to correlate photodiode signal data 
to pores occurring within a melt run in 
nickel 718 alloy 

• The OEMD decompose the signal into a set 
of band-limited functions and allows the 
extraction of instantaneous information 
from signal 

• The TKEO estimates the instantaneous 
frequency and amplitude of the signal 

 

 

 

5. Conclusions 

This paper introduces a Modified Singular Spectrum Analysis (MSSA) for de-noising signals detected, as 
example, during the laser welding process. The proposed method is derived from the well-established 
Singular Spectrum Analysis, a novel non-parametric technique for smoothing and de-noising the detected 
signals. The MSSA method aims to overcome the uncertainty in what window length value to select and 
what number of eigenvectors to choose. The examples have demonstrated the effectiveness of the proposed 
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method. Besides the paper shows how the application of OEMD and TKEO algorithms to properly denoised 
signals, allows to evaluate the quality of laser welded components without using any signal as reference. 
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