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Abstract 

Laser weld monitoring is usually based on the feedback from photodiodes able to provide information about radiation 
from plume, the reflected laser light and the thermal condition of the melt. By using the optical emissions, it is possible 
to evaluate laser process quality, in particular, to find out the relationship between emission characteristics and weld 
quality characteristics.  The optical signals detected during the laser welding are typically contaminated by different kind 
of noises that affect the photo-detector. To avoid this phenomenon, it is necessary to smooth and de-noise the signal for 
getting a “clean” signal. One of the most effective methods of dealing with noise contamination is to filter the noise out 
of the signal while retaining as much as possible of the region of interest in the frequency spectrum. Advanced filtering 
techniques such as discrete wavelet transforms, Wiener filtering have been used to that end. Although these methods 
have proven useful, their main drawback is the complexity of devising an automatic and systematic procedure, i.e., a 
mother wavelet function must be selected when using discrete wavelet transforms, the filtering function parameters 
must be chosen when using the Wiener filter, etc. This work presents an alternative to the digital filtering methods. It is 
a non-parametric technique based on principles of multivariate statistics. The original time series is decomposed into a 
number of additive time series, each of which can be easily identified as being part of the signal, or as being part of the 
random noise. The proposed technique significantly improves components localization. For giving practical applicability 
to the proposed method, we compare the methods by analyzing signals detected during the laser welding, 
demonstrating the expected advantages. 
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1. Introduction 

Laser welding is increasingly used in industrial applications, because of the advantages it offers, such as 
high speed, high accuracy, low heat input and low distortion. As for any other fusion welding process, weld 
imperfections can occur.  

In the automotive industry, for instance, the demand for real-time monitoring methods has become 
increasingly urgent since for reducing vehicle weight and improve fuel efficiency and safety, the 
development of lightweight and high-strength vehicles has prompted an increased use of advanced high 
strength steels (AHSS). These steels are galvanized in order to improve the surface corrosion resistance for 
automotive parts. It is still a great challenge the laser weld of galvanized steels in a zero-gap lap joint 
configuration. When laser welding of galvanized steels in a zero-gap lap-joint configuration, the zinc coating 
at the contact interface will vaporize; due to the lower boiling point (906 

0
C) of zinc as compared to the 

melting temperature of steel (above 1500 
0
C), the highly pressured zinc vapour expels the liquid metal out of 

the weld pool, resulting in blowholes and pores which dramatically decrease the mechanical properties of 
the weld [1]. 

Most common techniques in use today for process monitoring, employ photo-diode sensors to record 
electromagnetic (EM) signals arising from the molten pool during welding, with the objective of correlating 
the output from the sensor to features such as weld penetration, the occurrence of pin holes, or weld shape. 
These systems have been developed to monitor laser welding in real-time and generally examine the laser-
to-metal interactions to infer the quality of the weld itself. By using different types of sensors, responding to 
different wavelengths of light, different aspects of the process or weld can be monitored, such as the weld 
pool temperature, the plasma above the weld pool and the level of back reflection, for instance. Different 
detectable emissions can be used as the process signals:  

a) the reflected laser, originated from the amount of the laser source radiation which is not absorbed 
by the material 

b) radiation emitted from the metal vapour and the molten pool 
c) acoustic emissions, originated from the stress waves induced by changes in the internal structure of 

a work piece. 
By using the optical emissions, it is possible to evaluate laser process quality, in particular, to find out the 

relationship between emission characteristics and weld quality characteristics. Since these techniques are 
indirect, they require accurate signal interpretation and processing to infer information about the actual 
condition of the weld: the more accurate signal analysis technique, the better weld quality characterization. 
Several scientific fields, such as signal processing, statistics and neural networks have been used for 
condition monitoring [2, 3, 4, 5, 6, 7, 8].  

The optical signals detected during the laser welding, however, are typically contaminated by different 
kind of noises that affect the photo-detector. To avoid this phenomenon, it is necessary to smooth and de-
noise the signal for getting a “clean” signal. Although several methods have been developed to reduce the 
effect of noise, one of the most effective methods of dealing with noise contamination is to filter the noise 
out of the signal while retaining as much as possible of the region of interest in the frequency spectrum.  

The traditional method to de-noise process signals is to use digital Butterworth filters. Nonetheless, more 
advanced filtering techniques such as discrete wavelet transforms, Wiener filtering have also been used to 
that end. Although these methods have proven useful, their main drawback is the complexity of devising an 
automatic and systematic procedure, i.e., a mother wavelet function must be selected when using discrete 
wavelet transforms, the filtering function parameters must be chosen when using the Wiener filter, etc.  

Singular spectrum analysis (SSA) is a novel non-parametric technique based on principles of multivariate 
statistics. The original time series is decomposed into a number of additive time series, each of which can be 
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easily identified as being part of the signal, or as being part of the random noise. This way it's possible to get 
a clean signal without noise.  

The SSA method is based on two parameters, window length and number of eigenvectors, which has to 
be set before starting the de-noising procedure. Certain choices of window lengths and number of 
eigenvectors (grouping strategy) lead to poor separation between trend and noise in the signal, i.e., trend 
components become mixed with noise components in the reconstruction of the signal.   

The modified singular spectrum analysis (MSSA) method, presented in the paper, has been developed to 
overcome the previous drawbacks and is intended to be a valid alternative to traditional digital filtering 
methods.  

1.1 Singular Spectrum Analysis (SSA) 

The main purpose of SSA is to decompose the original series into a sum of series, so that each component 
in this sum can be identified as either a trend, periodic or noise. This is followed by a reconstruction the 
original series. The SSA technique consists of two complementary stages: decomposition and reconstruction 
and both of which include two separate steps.   

At the first stage we decompose the series and at the second stage we reconstruct the original series and 
use the reconstructed series which is without noise. We provide a discussion on the methodology of the SSA 
technique [9, 10, 11, 12].  

We consider the real-valued nonzero time series of sufficient length T  𝑌𝑇 = (𝑦1… . 𝑦𝑇). Fix 𝐿 (𝐿 ≤ 𝑇/2), 
the window length, and let 𝐾 = 𝑇 − 𝐿 + 1. 

Step 1 - Computing the trajectory matrix (Embedding) 

This transfer a one-dimensional time series  𝑌𝑇 = (𝑦1… . . 𝑦𝑇)   into the multi-dimensional series 

𝑋1……𝑋𝐾  with vectors  𝑋 𝑖 = (𝑦𝑖 … . 𝑦𝑖+𝐿+1)  ∈ R
L, where  𝐾 = 𝑇 − 𝐿 + 1. The single parameter of the 

embedding is the window length L, an integer such that  2 ≤  L ≤  T . The result of this step is the trajectory 
matrix: 

𝑿 = (𝑥𝑖,𝑗)𝑖,𝑗=1
𝐿,𝐾

= (

𝑦1 𝑦2… . . 𝑦𝐾
𝑦2 𝑦3… . . 𝑦𝐾+1
… . . . …… ……
𝑦𝐿   𝑦𝐿+1… . . 𝑦𝑇

) 

Note that the trajectory matrix 𝑿 is a Hankel matrix, which means that all the elements along the diagonal 
𝑖 + 𝑗 = 𝑐𝑜𝑛𝑠𝑡 are equal. 

Step 2 - Singular value decomposition of the trajectory matrix 

It can be proved that the trajectory matrix (or any matrix of that type) may be expressed as the sum of 
𝑑 rank-one elementary matrices 𝑿 = 𝐸1 + 𝐸2+ . . . . 𝐸𝑑, where 𝑑 is the number of non-zero eigenvalues in 
decreasing order, 𝜆1, 𝜆2, … 𝜆𝑑 of the 𝐿𝑥𝐿 matrix 𝐒 = 𝑿 ∙ 𝑿𝑻. The elementary matrices are given by: 

𝑬𝒊 = √𝜆𝑖 ∙ 𝑼𝒊𝑽𝒊
𝑻 

for  𝑖 = 1,2, … . , 𝑑, with 𝑼𝟏, 𝑼𝟐, … , 𝑼𝒅 being the corresponding eigenvectors, and the vectors 𝑽𝒊 being given 

by: 
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𝑽𝒊 = 𝑿𝑻 ∙
𝑼𝒊

√𝜆𝑖
 

for  𝑖 = 1,2,… . , 𝑑 .The contribution of the first elementary matrices 𝑬𝒊 to the norm of 𝑿 is much greater than 
that of the last matrices. Therefore, it is likely that these last matrices represent noise in the signal. The plot 
of eigenvalues in decreasing order is called the singular spectrum, and gives the method its name. 

Step 3 - Grouping 

The next step consists in partitioning the set of indices {1, … , 𝑑}  into 𝑚  disjoint subsets:  𝐼1, … , 𝐼𝑚 . Let 
𝑰 = 𝑖1, … , 𝑖𝑏 be one of these partitions. Then, the trajectory matrix 𝑬𝑰 corresponding to the set 𝑰 is defined as  
𝐸𝐼 = 𝐸𝑖1 + +𝐸𝑖2 +⋯𝐸𝑖𝑏 .  Once the matrices have been calculated for the partitions established,  𝐼1, … , 𝐼𝑚, the 
original time series trajectory matrix can be expressed as the sum of the trajectory matrices corresponding 
to each partition: 𝑿 = 𝐸𝐼 = 𝐸𝐼1 + 𝐸𝐼2 +⋯𝐸𝐼𝑏 .  

Step 4 - Reconstruction (diagonal averaging) 

In this step, each trajectory matrix 𝑬𝒊 is transformed into a principal component of length 𝑵 by applying a 
linear transformation known as diagonal averaging or Hankelization.  
To reconstruct each principal component, the average along the diagonals 𝑖 + 𝑗 = 𝑐𝑜𝑛𝑠𝑡  is calculated. The 
diagonal averaging algorithm (golyandina) is as follow: let 𝑌  be any of the elementary matrices 𝑬𝒊  of 

dimension  𝐿𝑥𝐾, the elements of which are  𝑦𝑖𝑗 , with 1 ≤ 𝑖 ≤ 𝐿 , 1 ≤ 𝑗 ≤ 𝐾.  

The time series 𝑮 (principal component) corresponding to this elementary matrix is given by: 

𝑔𝑘 =  

{
 
 
 
 

 
 
 
 
  
1

𝑘 + 1
∑ 𝑦𝑚,𝑘−𝑚+2                           𝑓𝑜𝑟 0≤𝑘<𝐿∗−1

𝑘+1

𝑚=1

1

𝐿∗
∑ 𝑦𝑚,𝑘−𝑚+2                                         𝑓𝑜𝑟 𝐿∗−1≤𝑘<𝐾∗

𝐿∗

𝑚=1

1

𝑁 − 𝑘
∑ 𝑦𝑚,𝑘−𝑚+2          𝑓𝑜𝑟 𝐾∗≤𝑘<𝑁

𝑁−𝐾∗+1

𝑚=𝑘−𝐾∗+2

   

where  𝐿∗ = 𝑚𝑖𝑛(𝐿, 𝐾) ,  𝐾∗ = 𝑚𝑎𝑥(𝐿, 𝑘) , and 𝑁 = 𝐿 + 𝐾 − 1.  

It can be shown [9, 10] that the squared norm of each elementary matrix equals the corresponding 
eigenvalue, and that the squared norm of the trajectory matrix is the sum of the squared norms of the 
elementary matrices. The largest eigenvalues in the singular spectrum represent the high-amplitude 
components in the decomposition. Contrariwise, the low-amplitude noise components of the signal are 
represented in the singular spectrum by the smallest eigenvalues. 
  



 5 

1.2 Modified Singular Spectrum Analysis (MSSA) 

One of the drawbacks of SSA is the lack of a general criterion to select the values of the parameters L 
(window length) and the grouping strategy used in the algorithm.  

Certain choices of window lengths and grouping strategy lead to poor separation between trend and 
noise in the signal, i.e., trend components become mixed with noise components in the reconstruction of the 
signal.  

To overcome the uncertainty in what value 𝐿 to select, we apply sequentially the Singular Value 
Decomposition step, starting from L=3: 
 for each iteration, the RMS between the current and previous eigenvalue is calculated 

𝑅𝑀𝑆(1) = 𝑟𝑚𝑠(𝜆1 : 𝜆2) 

𝑅𝑀𝑆(2) = 𝑟𝑚𝑠(𝜆2 : 𝜆3) 

--------- 

𝑅𝑀𝑆(𝐿 − 1) = 𝑟𝑚𝑠( 𝜆𝐿−1: 𝜆𝐿) 

 the minimum and its position is calculated based on defined halt criterion at iteration  

[𝑚𝑖𝑛, 𝑝𝑜𝑠𝑚𝑖𝑛] = 𝑚𝑖𝑛(𝑅𝑀𝑆(1: 𝐿 − 1)) < 𝜀 = 1/100 

The convergence of this sequential procedure is such in that the percentage RMS difference between the 
current and previous signals in a given iteration is sufficiently small. 

1.3 Application to laser welding process signals 

The aim of this section is to demonstrate how the proposed method effectively smooths the signals 
detected during the laser welding. The Data acquisition was performed with a NI CompactRIO multi-channel 
data acquisition board. Two different materials have been used for the trials. For each signal we firstly apply 
the Singular Spectrum Analysis, highlighting its own drawback, after that we demonstrate the effectiveness 
of the modified version.  

 
Example #1 – Welding of High Strength Steel DP600 – overlapped samples, sampling frequency 32768 Hz  
 
Figure 1 displays the signal (up) detected during the laser welding of overlapped HSS samples and the 

relative spectrum (bottom), where the noise spectral band is highlighted (red line).  
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Fig.1. up) signal, bottom) spectrum  

Figure 3 displays: de-noised signal (up-left) and the relative spectrum (bottom-left), residual noise (up-
right) and relative spectrum (bottom-right). 
 

 

Fig.2. up-left) de-noised signal, bottom-left) de-noised signal spectrum, up-right) residual noise, bottom-right) noise spectrum 

Example #2 – Welding of Titanium alloys - overlapped samples, sampling frequency 95000 Hz 
 
Figure 3 displays the signal (up) detected during the laser welding of Titanium alloy Ti64 samples and the 

relative spectrum (bottom), where the noise spectral band is highlighted (red line).  
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Fig. 3. up) signal, bottom) spectrum  

Figure 4 displays: de-noised signal (up-left) and the relative spectrum (bottom-left), residual noise (up-
right) and relative spectrum (bottom-right). 
 

 

Fig.4. up-left) de-noised signal, bottom-left) de-noised signal spectrum, up-right) residual noise, bottom-right) noise spectrum 

It should be noted, looking at the spectra shown in figure 2 and figure 4, the separation between the 
spectra. This condition ensures that the de-noised signal is not contaminated by noise. The Modified Singular 
Spectrum analysis method allows the smoothing of the signal without fixing any initial conditions. 
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1.4 Conclusions 

This paper introduces a Modified Singular Spectrum Analysis for de-noising signals detected, as example, 
during the laser welding process. The proposed method is derived from the well-established Singular 
Spectrum Analysis, a novel non-parametric technique for smoothing and de-noising the detected signals. The 
proposed method aims to overcome the uncertainty in what window length value to select and what 
number of eigenvectors to choose. The examples have demonstrated the effectiveness of the proposed 
method. 
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