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Abstract 

In the industrial practice of the laser cutting, the cut quality is defined in a qualitative manner by skilled technicians. 
Specific features lying on the cut edges in fact compose the overall quality, i.e. inclination of striations, presence of burr 
and different process zones along the edge. These attributes are evaluated by experts which at the end assess the cut 
quality on the base of their personal judgment. On the other hand, measurements of roughness and burr height in 
accordance to standards or internal procedures are also carried out. However, measuring is time consuming and more 
important is not always in agreement with the qualitative evaluation given by skilled technicians. In this scenario, the 
paper presents a method relying on visual information able to measure quantitatively a new class of quality attributes, 
which opportunely combined provide an index of performance consistent to the qualitative one based on experience.  
In this study, images of the cut edge of 5mm thick stainless steel AISI 304 cut with nitrogen as assisting gas are analyzed. 
The image analysis algorithm utilizes both standard gradient techniques, wavelets decomposition and analyses in the 
frequency domain for measuring periodic and not periodic quantities. Burr profile is isolated, the typical process zones 
are successfully identified and striation’s angle is computed for each zone. The gray analysis method combining multiple 
outputs from the image analysis algorithm is applied in order to compute the overall quality. The weights are set to 
express correctly the judgement of technicians. The method proved reliable, relatively fast and promising for further 
extension to different thicknesses and materials. 
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1. Introduction 

For many applications and in particular for cutting thin sheet metals, laser cutting has become the 
reference technology thanks to its flexibility and the gain of productivity if compared with other competitive 
technologies. However, the proper definition of the process parameters is fundamental for achieving the 
desired performance (Thomas, 2013). In fact, because of the multi-physics nature of the process for which 
fluid mechanics is coupled with thermal phenomena, there is a lack of useful models able to reliably predict 
cut quality; consequently, process parameters have to be adjusted through experimentation.  

Assessing quality for the laser cutting process is not trivial: fusion cutting and oxidation cutting produce 
different features to be evaluated and often there is a lack of classification rules. The reference standard for 
quality classification, i.e. ISO 9013:2017, classifies cut quality based on roughness (Rz5), inclination of the cut 
edges (u) and geometrical tolerances. Among them, the first two parameters describe the quality of the cut 
edge, whereas the last one the precision of the cutting system and at the end of the produced pieces. In 
laser fusion cutting it is widely acknowledged that the quantification of the burr height is significant while 
the inclination of the cut edge plays only a marginal role; in addition, roughness may only be useful to 
inspect quality among burr-free specimens. Furthermore, some geometrical parameters of the cut edge, e.g. 
mean angle of the striations and location of the process zones, are usually considered by technicians at least 
as an aesthetic index of merit.  

The quality class defined by the ISO 9013:2017 rarely permits to distinguish cut quality with the same 
accuracy as the technician’s judgement and hence, this classification is not well related with human 
perceived quality. Accordingly, Librera et al., 2015, showed that visually appreciated differences in the cut 
edge quality are better represented by an areal measurement of the roughness compared to the standard 
Rz5 parameter. Unfortunately, these kinds of measurements are far from being inserted in the usual 
industrial practice mainly because of long measurement times and high costs of instrumentation. 
Considering these points, visual sensors have considerable advantages: limited cost, short time required for 
the whole measuring process and the possibility to develop ad-hoc image analysis algorithms to detect 
different features.  

Thanks to their performance, cameras are more and more adopted in the manufacturing industry. 
Focusing the attention on quality assessment, Demircioglu et al., 2013, Al-Kindi et al., 2009 and Lee et al.,  
2005 describe the potentialities of visual algorithms for measuring surface roughness. Unfortunately, these 
algorithms are based on complex tools such as neural networks which are not easily controllable and 
strongly depend on the training phase.  

The presented study develops a measurement method which is fast and quantitative. The main advantage 
of the method is that it considers many quality parameters that, opportunely combined, gives a synthetic 
score which is close to the technicians’ judgement.  

To avoid unnecessary complexness, an image analysis algorithm was developed based on standard tools 
to extract multiple outputs and representing the man-observed features. Taking advantage from the studies 
of Tsai et al., 2009 and Çaydaş et al., 2008, the gray relational analysis was used for combining those outputs. 
In fact, the gray relational analysis proves effective in the case of a limited number of specimens (Tsai et al., 
2009) and it gives a synthetic score which can be easily manipulated.  

Finally, the method yields a relative measure of quality by construction.  
The paper is organized as follows. In Section 2 the information about the experimental setup and 

procedure are reported. Section 3 describes the measurement algorithm while section 4 reports the main 
results of the study. 
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2. Experimental setup 

2.1.  Experimental equipment 

The specimens, AISI 304 stainless steel and 5mm thick, were cut with a BLMGroup LC5 machine equipped 
with an IPG YLS-6000 laser source with a maximum available power of 6kW and a fiber diameter of 100µm. 
The cutting head is a Precitec Procutter that has a collimation lens of 100mm and a focal lens of 200mm. 
Therefore, the laser spot in the waist is equal to 200µm. 

Roughness was measured with a linear profilometer (Perthometer Concept MAHR PGK–MAHR 
PCMESS7024357). To avoid damages, the system was equipped with a 5µm diameter tip and an arm with a 
50µm range. The cut-off wavelength for the roughness profile was set to 0.8mm according to the standard 
ISO 4287:1997. 

Images were acquired by a 3D CNC Mitutoyo Vision Measuring System of series Quick Vision ELF. The 
instrument offers great resolution (0.1µm) and flexibility in setting appropriate light conditions.  

2.2. Experimental procedure 

A batch of 24 specimens was considered. The specimens were obtained by changing the cutting speed, 
laser power, focal position as well as gas pressure in order to obtain the largest possible variability of 
outputs. In other words, all the feasibility window of the process for the mentioned specimens (AISI 304 
stainless steel and 5mm) was explored and undesired effects were collected (e.g. burr, high striations’ angle, 
etc.) to properly test the measurement tool. Table 2 summarizes the 24 process parameter conditions. 

For each specimen, the Rz5 roughness was measured at three locations, namely 1/3, 1/2 and 2/3 of the 
sample thickness, t. Each measurement was replicated 3 times in different regions of the specimen. Then Rz5 
roughness data were averaged for each location and the maximum Rz5 value among the three locations was 
chosen as indicated by the standard ISO 9013:2017. The perpendicularity or angularity tolerance, u, reported 
in the same standard was considered negligible compared to other quality parameters such as burr length 
and roughness.  

A team of four trained operators was asked to evaluate cutting quality in a scale between 0 and 5 and 
results were averaged to get to a final subjective judgement scale. They basically considered the burr 
behavior, brightness of the cut edge, regularity of the striation pattern and other qualitative and personal 
indexes such as the feeling when touching the surface. The quality scale was then normalized between 0 and 
1.  

Visual information was collected from three images for each specimen in three different locations. The 
camera in the Mitutoyo Quick Vision ELF was calibrated and hence, the transformation matrix between pixel 
units and SI units is known. During the image acquisition, the magnification level of the instrument was set to 
2.5X.  

Finally, light conditions play a crucial role for the reliability of the image analysis algorithm. This is due to 
some thresholds which must be set for extracting information. To overcome this issue, light conditions were 
finely tuned in a preliminary stage of the data acquisition process to ensure reliability and consistency of 
results. 

3. Proposed method 

As depicted in Fig. 1, the proposed method is in two fundamental steps: the image analysis algorithm and 
the gray relational analysis. 
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Fig. 1. Scheme of the presented method. 

The image analysis algorithm is responsible for extracting data from specimen figures, whereas the gray 
analysis method is used as described by Çaydaş et al., 2008 among others, to fuse different quantities in a 
synthetic score. 

3.1. Image analysis algorithm 

The image analysis algorithm combines different techniques to extract the significant parameters. The 
aim is to extract the same features analyzed by technicians to combine them later thanks to the gray 
relational analysis. Since standard techniques for image analysis such as wavelets decomposition, 2D discrete 
Fourier Transform and gradient based methods are used, the detailed descriptions are not reported for the 
sake of briefness and we invite the readers to refer to the literature section.  

The algorithm is summarized in Fig 2. In the pre-processing phase, input images are adapted to 
compensate for misalignments in the x-y plane applying proper rotations. Then, burr height, ℎ, is computed 
thanks to a standard gradient based method. The well-known methods developed by Canny, 1986 for edge 
detection and Otsu, 1979 for image thresholding were combined to detect the piece outlines in the vertical 
direction. As a result, the bottom boundary of the piece is computed and the burr height profile is calculated 
using the information of the calibration matrix. In the second part of the algorithm, the wavelet 
decomposition is applied to the images and the three process zones are detected by looking at the horizontal 
details of the image.  

As reported by DeBrunner et al.,  1999 wavelet transform is an advantageous technique for texture 
analysis. In fact, the wavelet transform applied to images gives as output directional and frequency 
information preserving the spatial domain (Olkkonen, 2011).  

 

Fig. 2. Block diagram reporting the main steps of the image analysis algorithm. 
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Fig. 3. (a) Original figure of one of the analyzed specimens; (b) Results of the image analysis algorithm for the same image (𝑤 represents 
the zone’s width,  ℎ̂ is the estimate of mean burr height, 𝛼 is the mean striation’s angle and 𝐼 ̅is the average intensity.). 

In other words, while the Fourier Transform loses the spatial information about the location of the 
harmonics, the wavelet transform preserves such information. Once the zones are calculated, width of the 
three zones (𝑤1, 𝑤2 and 𝑤3) and average intensity,  𝐼,̅ can be inferred. 

The average striation’s angle, 𝛼, is computed through the fast Fourier transform (FFT) applied to images 
by analyzing the position of the peaks in the magnitude spectrum. Parallel stripes (e.g. striations) produces a 
concentration of peaks around their perpendicular direction in the frequency domain. The average angle is 
computed averaging the angles of each zone. Finally, an additional control variable related to the quality of 
the fit, 𝜂, is extracted; it detects whether striations are well approximated by a line or if their direction is 
changing along the zone. The extracted quantities are summarized in Table 1. 

Table 1. Quantities extracted by the image analysis algorithm and then used in the gray relational analysis. 

Nomenclature 

Average burr height ℎ [-] 
Process zones 𝑗 ∈ [1, 3] [-] 

Zones’ width 𝑤j [-] 

Average intensity 𝐼 ̅ [-] 

Striations’ average angle 𝛼 =
1

3
∑ 𝑤𝑗𝛼𝑗 [°] 

Striations’ Fitting control 𝜂 [-] 

3.2. Gray relational analysis 

In gray relational analysis, multiple outputs are condensed in one single “color” representing the level of 
information; this technique is used to express the correlation between a desired sequence of outputs and 
the actual one. This technique is composed by two steps: data pre-processing and gray relational grade 
calculation.  

3.2.1. Data pre-processing 
 
Data pre-processing is a necessary step for transferring original sequences of data into a comparable 

sequence. In other words, according to the desired performance, each sequence of data is normalized 
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between zero and one. Given the sequence of data  𝑥𝑖(𝑘) from each of the quantities defined in Table 1, 
where 𝑘 represents the quantity and 𝑖 ∈  [1, 𝑁] the index of the specimens for each sequence, different 
normalizations are used according to the target value of each sequence. If the target value of the original 
sequence is as large as possible, the sequence has the characteristic “the-larger-the-better” and is 
normalized as: 

𝑥𝑖
∗(𝑘) =  

𝑥𝑖(𝑘)−min(𝑥𝑖(𝑘))

max(𝑥𝑖(𝑘))−min(𝑥𝑖(𝑘))
 ,  (1) 

if the characteristic of the sequence is the-smaller-the-better, the original sequence is normalized as: 

𝑥𝑖
∗(𝑘) =  

max (𝑥𝑖(𝑘))−𝑥𝑖(𝑘)

max(𝑥𝑖(𝑘))−min(𝑥𝑖(𝑘))
 ,  (2) 

and finally, if we are interested in a specific target value, 𝑥𝑖
0, the normalization of the original sequence 

follows as: 

𝑥𝑖
∗(𝑘) =  

| 𝑥𝑖(𝑘)− 𝑥𝑖
0 |

max(𝑥𝑖(𝑘)) − 𝑥𝑖
0 .  (3) 

According to equations (1-3), in the final normalized data sequences 1 corresponds to the best 
performance whereas 0 represents the worst one. 

3.2.2.  Calculation of the gray relational grade 
 
As aforementioned, the gray relational grade expresses the correlation between actual data and 

reference ones. For this purpose, given  𝑥0
∗(𝑘) as the reference sequence indicating the ideal performance 

for each quantity, the gray relational coefficient is expressed as: 

𝜉𝑖(𝑘) =  
𝛥min + 𝜁⋅𝛥max

𝛥0𝑖(𝑘)+ 𝜁⋅𝛥max
 ,  (4) 

where ζ ∈  [0, 1] is the distinguishing or identification coefficient (usually chosen as ζ = 0.5) and  𝛥0𝑖(𝑘) 
is the deviation sequence, namely: 

𝛥0𝑖(𝑘)  = |𝑥0
∗(𝑘) −  𝑥𝑖

∗(𝑘)| , 

𝛥max  = max∀𝑗∈𝑖 max
∀𝑘

| 𝑥0
∗(𝑘) −  𝑥𝑖

∗(𝑘)| ,  (5) 

𝛥min  = min∀𝑗∈𝑖 min
∀𝑘

| 𝑥0
∗(𝑘) − 𝑥𝑖

∗(𝑘)| . 

After obtaining the gray relational coefficient, the gray relational grade is computed via a weighted sum of 
the coefficients as: 

𝛾𝑖 =  ∑ 𝑤𝑘 ⋅ 𝜉𝑖(𝑘)𝑁
𝑘=1 ,              ∑ 𝑤𝑘𝑘 = 1, 𝑤𝑖 ∈ [0, 1] ∀ 𝑖 = 1, . . , 𝑘 . (6) 
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As a result, the gray relational grade is used to evaluate the relationship among the original sequences. 
The higher the gray relational grade, the closer the comparability sequence is to the reference one. It is here 
emphasized that the gray relational grade is only a relative measure of how well a comparability sequence 
fits with the reference one, and no absolute information about quality are available.  

3.2.3. Choice of weighting coefficients 
 
The choice of the weighting coefficients, 𝒘, in equation (6) and of the distinguishing coefficient, ζ, in 

equation (4), represents a non-trivial question. Moreover, in many studies 𝒘 and 𝜁 are assumed a priori or 
are set according to author’s experience (Ganguly et al., 2012; Lin et al,. 2011).  

Since the main goal of this study is to determine a quality measure consistent with the one of technicians, 
the weighting coefficients were the best-fits weights among the ranking from the gray relational grade and 
the ranking from the judgement of technicians. This approach was successively validated. 

4. Analysis of results 

Table 2 reports process parameters, quality and roughness data of the 24 analyzed specimens. Images of 
the 24 specimens are shown in Table A1. Since Rz5 = 13µm is the threshold indicated by the ISO 9013:2017 
between first and second quality class, all the analyzed data lies in the second quality class (except for 
sample 10 with a Rz5 = 12.99µm very close to the threshold). Moreover, a clear correlation between the 
roughness parameter Rz5 and the quality expressed by technicians is not found, as Figure 4 shows. 

Table 2. Process parameters, measured Rz5 and personal quality from technicians of the 24 specimens. Columns denoted by “Op. #” 

report the score given by the four trained operators; quality is computed averaging the four judgements and normalizing to one. 

N Power Speed Pressure Focal pos. Op. 1 Op. 2 Op.3 Op.4 Quality Rz5 (ISO 9013) 

[-] [W] [mm/min] [bar] [mm] [-] [-] [-] [-] [-] [µm] 

1 6080 6500 16 -1.8 0 0 1 0 0.05 22.24 
2 6080 7000 20 -2.5 1 1 2 1 0.25 17.89 
3 5800 5500 20 -2.8 1 2 3 1 0.35 21.65 
4 2900 2500 19 -4.0 5 4 4 5 0.90 28.83 
5 5000 4500 19 -4.0 5 5 4 5 0.95 20.98 
6 5000 5500 19 -4.0 3 3 3 4 0.65 16.14 
7 6000 6300 19 -4.0 3 2 4 3 0.60 15.05 
8 6080 5800 20 -5.0 1 1 2 2 0.30 15.37 
9 6080 6000 16 -1.8 0 0 0 0 0.00 21.66 
10 6080 5500 16 -6.3 3 3 3 3 0.60 12.99 
11 6080 6000 20 -5.5 2 2 1 2 0.35 26.30 
12 5500 6000 21 -2.8 3 3 2 3 0.55 17.02 
13 5800 6000 20 -2.8 3 2 3 4 0.60 21.40 
14 3100 2500 19 -4.0 4 5 5 5 0.95 26.51 
15 3000 2500 17 -4.0 4 4 3 4 0.75 25.12 
16 6000 5800 19 -4.0 2 3 4 3 0.60 18.52 
17 5080 4064 19 -4.0 4 5 5 5 0.95 24.58 
18 4080 3709 19 -4.0 4 4 5 4 0.85 24.83 
19 6080 5530 19 -5.0 5 5 5 5 1.00 14.50 
20 6080 5700 19 -5.5 5 5 5 4 0.95 17.24 
21 5080 4200 19 -5.5 5 5 5 5 1.00 21.87 
22 5080 4400 19 -5.5 5 4 5 5 0.95 20.38 
23 6080 5900 19 -5.5 4 5 4 5 0.90 17.99 
24 3080 2800 19 -5.5 4 5 4 4 0.85 21.36 
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Fig. 4. Normalized quality given by technicians versus the Rz5 parameter. No clear trends are observed: quality given by technicians 
considers more parameters other than the roughness. 

As a result, the quality classes given by the ISO 9013:2017 standard do not allow to distinguish different 
levels of laser cut quality while the alone roughness does not represent quality as perceived by technicians. 

To set the method, the available 24 specimens were divided in two groups: the first one (16 specimens) 
was used to calibrate the weights (eq. (6)) and the second one (8 specimens) was used to validate the 
method. Each group contained a set of specimens which was representative of the full scale of quality. The 
gray relational coefficients (𝜉𝑖(𝑘), eq. (4)) were computed from the four quantities (Table 1): average burr 
height, ℎ, (𝑘 = 1), average intensity, 𝐼,̅ (𝑘 = 2), average angle, 𝛼, (𝑘 = 3), and striations’ fitting control, 𝜂, 
(𝑘 = 4). Average angle, fitting control and average burr height have the characteristic the-smaller-the-
better, whereas the other two parameters have the characteristic the-larger-the-better. 

Fig 5 shows a monotonic trend of quality as a function of the gray relational grade for both the calibration 
and validation groups: the monotonic trend confirms that the rankings given by the gray relational grade and 
the technicians’ judgement match.  

Table 3. Results of the application of the gray analysis on the calibration group. Coefficients of the gray analysis are reported in Table 5. 

N ℎ 𝐼 ̅ 𝛼 𝜂 𝜉𝑖(1) 𝜉𝑖(2) 𝜉𝑖(3) 𝜉𝑖(4) 𝛾𝑖 Quality 
[-] [mm] [-] [°] [-] [-] [-] [-] [-] [-] [-] 

19 0.0184 392.48 4.2740 0 0.9594 0.6288 0.5249 1.0 0.8814 1.00 
5 0.0134 374.51 5.2703 0 1.0000 0.3833 0.4721 1.0 0.8609 0.95 
20 0.0399 394.17 0.7735 0 0.8167 0.6690 0.8652 1.0 0.8541 0.95 

17 0.0288 379.26 0.6862 0 0.8846 0.4274 0.8794 1.0 0.8536 0.95 
23 0.0639 402.9 1.2837 0 0.7005 1.0000 0.7905 1.0 0.8383 0.90 
4 0.0249 340.93 1.2067 0 0.9113 0.2217 0.8010 1.0 0.8294 0.90 
24 0.0431 387.57 1.2718 0 0.7991 0.5351 0.7921 1.0 0.8197 0.85 
15 0.0450 376.94 0.0458 0 0.7889 0.4047 1.0000 1.0 0.8174 0.75 
6 0.0310 383.06 11.7682 0 0.8703 0.4708 0.2850 1.0 0.7934 0.65 
16 0.0361 360.69 13.6452 0 0.8388 0.2948 0.2557 1.0 0.7511 0.60 
7 0.0580 332.31 14.3781 0 0.7259 0.2000 0.2458 1.0 0.6837 0.60 
13 0.0302 361.78 9.8322 1 0.8755 0.3003 0.3231 0.2 0.5438 0.60 
11 0.1971 344.71 12.9796 0 0.3913 0.2327 0.2654 1.0 0.5330 0.35 
3 0.0422 351.59 13.3893 1 0.8039 0.2559 0.2593 0.2 0.4976 0.35 
8 0.3166 349.82 9.6156 1 0.2803 0.2495 0.3280 0.2 0.2575 0.30 
1 0.4858 375.11 18.7332 1 0.2000 0.3884 0.2000 0.2 0.2264 0.05 
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Fig. 5. Normalized quality given by technicians and gray relational grade given combining the outputs of the image analysis algorithm. 
Results for the calibration (a) and the validation (b) groups.  

Data of the calibration and the validation groups are listed in Table 3 and Table 4 respectively; weights are 
reported in Table 5. 

Table 4. Results of the application of the gray analysis on the validation group. Coefficients of the gray analysis are reported in Table 5. 

N ℎ̂ 𝐼 ̅ 𝛼̅ 𝜂 𝜉𝑖(1) 𝜉𝑖(2) 𝜉𝑖(3) 𝜉𝑖(4) 𝛾𝑖 Quality 

[-] [mm] [-] [°] [-] [-] [-] [-] [-] [-] [-] 

21 0.0188 420.51 2.9484 0 1.0000 1.0000 0.6864 1.0 0.9686 1.00 
22 0.0215 366.46 3.0443 0 0.9741 0.2438 0.6773 1.0 0.8497 0.95 
14 0.0292 357.17 0.7023 0 0.9072 0.2158 1.0000 1.0 0.8466 0.95 

18 0.0342 382.32 0.7735 0 0.8684 0.3134 0.9857 1.0 0.8406 0.85 
10 0.1143 352.87 11.0858 0 0.5156 0.2049 0.3213 1.0 0.5931 0.60 
12 0.0577 396.78 7.8389 1 0.7232 0.4235 0.4078 0.2 0.4980 0.55 
2 0.1212 350.79 20.3638 1 0.4982 0.2000 0.2000 0.2 0.3401 0.25 
9 0.4254 360.06 8.5602 1 0.2000 0.2238 0.3848 0.2 0.2218 0.00 

Table 5. Coefficients used in the gray analysis (eq. (4) and eq. (6)). 

𝜁 𝑤1 𝑤2 𝑤3 𝑤4 
[-] [-] [-] [-] [-] 

0.25 0.47 0.14 0.10 0.29 

 

5. Conclusions 

The presented method proved effective for ranking 5mm thick AISI 304 specimens according to their 
relative quality. The method overcomes the issue of subjective quality assessment given by technicians and 
may help technicians to rank between specimens having quality really close to each other. In addition, since 
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many parameters are considered, the method gives a quality ranking closer to the one of technicians if 
compared with standard ISO 9013:2017.  

Future developments regard the extension of the presented method to different thicknesses and other 
materials cut with nitrogen as assisting gas. Different metallic alloys in fact, namely carbon steels as well as 
aluminum and copper based alloys, manifest similar features once laser cut with nitrogen. Conversely, 
thickness plays an important role in the feature generation. In particular, the method should be tested for 
very thin thicknesses (from 0 to 3-4mm) where features are either not present or cannot be easily 
distinguished.  

While the method can give only a relative measure of quality i.e. the ranking of the analyzed specimens, 
absolute quality assessment remains a research question. Future developments will focus on this point and 
on the possibility of integrating machine learning algorithms for the automatic optimization of process 
parameters. 
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Appendix A. Images of the specimens 

Table A1. Images of the 16 specimens used for calibrating the method. Process parameters are reported in Table 1. 
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