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Abstract 

Until recently, additive manufacturing quality control has been diligently based on temperature measurements of the 
process zone or layer-by-layer high resolution imaging. For this, various sensors such as pyrometers, photo-diodes and 
matrix CCD detectors were involved. However, temperature measurements do not provide information about the heat 
transfer in depth thus reducing the reliability of this method. High resolution imaging controls the quality post factum, 
after a layer or even an entire part is already manufactured. No methods are known so far to monitor the quality of 
additive manufacturing in situ and in real-time with high confidence. Our approach is to monitor the quality of the 
additive manufacturing process in situ and in real-time by means of acoustic emission, detected by fiber optical sensors. 
It is shown that the melting and sintering process have a number of unique acoustic signatures that can be detected and 
interpreted in terms of quality. The combination of such acoustic signatures is related to heat distribution and process 
dynamics inside the processing zone. The interpretation of AE in terms of process quality is made by machine learning. 
This includes the extraction and recognition of unique acoustic signatures from the different sintering or melting events 
and further classification of those. 
The processing parameters for selective laser melting of a 316L stainless steel were tuned to create a cube with separate 
sections of three quality levels. The corresponding AE data was acquired; the acoustic features were extracted and 
classified according to the different qualities. The confidence level achieved in the classification was as high as 83-89% 
showing that this methodology has a big potential for in situ and real-time monitoring in additive manufacturing process. 
The technical realization of the methodology presented is flexible and it can be easily integrated in any existing 
commercial additive manufacturing machine (as a hardware and/or software) as an additional module. 
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1. Introduction 

In recent years, additive manufacturing (AM) has attracted considerable attention from the engineering 
and scientific communities and it is seen by many as the next industrial revolution (Zhai et al., 2014). The 
main reasons are twofold. First, the geometrical limitations met in the traditional subtractive and formative 
methods are overcome (Khairallah et al., 2016). Second, it has outstanding economic benefits (Guessasma et 
al., 2015; Moylan et al., 2014). These are also valid for Selective Laser Melting (SLM) (Frazier, 2014). SLM is a 
powder-bed AM technology that builds 3D components, layer by layer, from an alloy powder. This 
technology has been often used for fast prototyping of complex shapes components with good mechanical 
properties (Frazier, 2014). 

Despite the significant progress in the AM machines, process and materials, there is a consensus among 
scientists and industries that there is a lack in the quality repeatability in mass production (Everton et al., 
2016; Gu et al., 2016; Guo and Leu; 2013; Tapia and Elwany, 2014). This is due to the high sensitivity of the 
AM process to multiple unrelated factors, such as laser parameters, laser optics, mechanical and local optical 
material properties, particles configuration of the powder in the melt zone, etc. (King et al., 2016; Tammas-
Williams et al., 2015; Shifeng at al., 2014) .  

Today, the standard in industries for controlling the quality of AM produced workpieces in terms of 
porosity or cracking is X-ray tomography (Thompson et al., 2016). Such controls are made post mortem, after 
the machine time and materials have been already spent. This method is recognized as being very onerous 
and time-consuming. Attempts to incorporate quasi real-time visual quality control exist in the literature 
(Everton et al., 2016; Sharratt, 2015) but few of those are rarely implemented in real industrial machines 
(Everton et al., 2016). Two main approaches are mostly reported and they are: i) high resolution cameras 
and ii) temperature measurements in the melt zone (Everton et al., 2016). The major drawbacks of these 
techniques are that they are limited to surface measurements while no information is accessible in depth. 

This contribution attempts to address the problem of in situ and real-time monitoring of SLM by 
combining acoustic emission (AE) and machine learning (ML). AE is known for decades to be very efficient, 
highly sensitive, cost effective and non-destructive method for tracking crack and/or defect initiation and 
propagation in non-transparent environments. The main obstacles of using AE technics in AM process is in 
the weak signals with a strong noise background. To operate under these conditions, highly sensitive AE 
sensors based on optical fibres were involved in this work. The simultaneous use of ML allows extracting the 
informative AE patterns even in presence of strong stationary noises. This approach has been already 
successfully applied to a number of applications, including tribology (Saeidi et al. 2016; Shevchik et al., 2016) 
and fracture mechanics (Shevchik et al., 2017a).  

In this work, the investigations were carried out on a real SLM process using a stainless steel powder. The 
AE signals were recorded using a fibre Bragg grating (FBG). The classification was performed using spectral 
convolutional neural networks (SCNN). 

2. Experimental setup 

Although the approach presented in this work can be easily extended to many AM processes, the focus 
was kept on the selective laser melting (SLM) process. Hence, the experiments were carried out using an 
industrial commercially available Concept M2 machine (Concept Laser GmbH, Germany) with a fiber laser 
operating in a continuous mode at a wavelength of 1071 nm, the focused laser spot diameter was 90 μm and 
the beam quality was M

2
 = 1.02.  

The powder material was a CL20ES stainless steel (1.4404 / 316L) with a particle size distribution ranging 
from 10 to 45 μm. 



 3 

The geometry of the experimental specimen was a cube with dimensions 10x10x20 mm
3
. The sample was 

produced in a N2 atmosphere so that the O2 content stayed below 1 % during the entire process. Most of the 
process parameters were kept constant so that the laser power P was set to 125 W, the hatching distance h 
was 0.105 mm and the layer thickness t was 0.03 mm. Three levels of quality were produced which were 
characterized by different pores concentrations. They were obtained by varying the laser scanning velocity. 
Each velocity was chosen to achieve a specific light input providing a known concentration of pores. The 
energy was calculated based on the work of Thijs et al. (2010). The laser scanning velocities, their 
corresponding energy densities, quality levels and pores concentrations are given in Table 1. Figure 1 shows 
typical pictures of pores/defects taken by light microscope for the three quality levels. 

The poor quality with the highest pores concentration was achieved with the highest scanning velocity. 
The cause of pores is the lack of energy input to sinter all particles within the laser beam. The pores in 
medium quality are caused by material overheating due to the lowest velocity of the laser scan and 
consequently a higher energy dose input locally. The highest quality is intermediate in terms of scanning 
velocity that provides, on the one hand, enough energy to sinter all particles inside the laser beam but, on 
the other hand, avoids material overheating. More details on these mechanisms can be found in (Bland and 
Aboulkhair, 2014). 

Table 1. Process parameters: laser scanning velocity, their corresponding energy density and quality level in terms of pores 

Quality level 

Pores 
concentration 

[%] 

Laser scanning 
velocity 

(mm/s) 

Energy density 

(J/mm3) 

High quality 0.07 ± 0.02 % 500 79 

Medium quality 0.3 ± 0.18 % 300 132 

Poor quality 1.42 ± 0.85 % 800 50 

 

   

Fig. 1. Representative microstructures with pores for the quality levels: (a) poor quality; (b) medium quality and (c) high quality  

 
In this work, the AE of the entire SLM process was recorded with a FBG. This sensor was selected due to 

its high sensitivity and high time resolution. The FBG was simply placed inside the machine chamber, at a 
distance of 20 cm from the process zone. More details about FBGs can be found in (Kashyap, 2010; 
Ramakrishnan et al., 2016). The reflected signal was additional digitized using a high speed photo-diode, 
connected to data acquisition unit and data recording software. Both were from Vallen (Vallen Gmbh., 
Germany). All signals were digitized with a sampling rate of 1 MHz.  

 (a)  (b)  (c) 
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3. Data processing 

3.1. Features extraction  

In this contribution, the relative energies of the narrow frequency bands were taken as the input features 
for the spectral convolutional neural networks (SCNN) classifier. The frequency bands were extracted using a 
standard wavelet packet transform (WPT) (Tazebay and Akansu, 1995). The WPT is an extension of the 
traditional wavelet transform that can be represented as a pass of the signal f through a set of filters 
(Tazebay and Akansu, 1995). 

The application of set of filters results in the extraction of low and high frequency bands of the digitized 
signal f, where each frequency band is localized in both, time and frequency domains. The result of WPT is a 
sparse signal representation with a wavelet spectrogram. 

Several wavelet families of Daubechies (1992), Symlets and Coiflets were investigated with regards to 
their applicably to the acquired AE data. The best choice was provided by the Daubechies wavelet (1992) 
with ten vanishing moments. It showed the minimum approximation errors on the given AE signals and so 
was used for analysis. 

3.2. Spectral convolutional neural networks (SCNN)  

SCNN are an extension of traditional convolutional neural networks that inherits all advantages of the 
latter, and they are capable to process data of a more complex configuration as compared to traditional 
convolutional networks. Such advantages are achieved using irregular convolutional operations on given 
datasets. The irregularity of the given data in the SCNN is captured using graphs. This extern tool guides the 
network during a training procedure to optimize its structure. As a result, it gives the possibility to process 
strongly irregular data where the application of traditional convolutional neural networks fails completely. 
Several methods of the SCNN are reported in literature and, in our contribution, a spectral approach 
developed by Mathieu et al. (2014) was used.  

The experiments in the training and testing of the SCNN were carried out in Microsoft Visual Studio C# 
environment, for which the original code was designed. The computer used was a single CPU one with i5 
processor. 

All details on the methods used can be found in (Shevchik et al., 2017b) and more details on the SCNN 
through FFT can be found in Mathieu et al. (2014).  

4. Results and discussion 

The collected AE signals were divided into three categories according to the manufacturing quality of the 
workpiece layers described in Table 1 and shown in Fig. 1. A number of patterns were collected from the 
recorded signals to form two datasets; one for training and one for the test. Each category (that 
corresponded to poor, medium and high quality) in each dataset was equally represented by 300 patterns 
and no common data existed between both datasets. This approach simulated real-life conditions where the 
trained system has to operate with the new input data. Then, these extracted features were fed to the SCNN 
classifier. 

The SCNN for classification counted four convolutional layers that alternated with four pooling. The layers 
number was experimentally estimated as the best compromise between the computational complexity and 
performance efficiency (Shevchik et al., 2017b). 
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The classification results from the SCNN are shown in Table 2. In this table, the ground truths are given in 
columns whereas the results of the classification are given in rows. The accuracy is calculated from the 
number of the true positives divided by the total number of the tests for the individual categories. These 
values are given in the diagonal cells of the table (grey cells). 

The total accuracies achieved using the aforementioned method ranges from 83 and 89%. These results 
clearly show the potential of the proposed approach, in particular when taking into account that it is only 
the first feasibility study. In other words, we can conclude that the acoustic signal recorded by an FBG and its 
processing with the SCNN has high potential to be a solution for in situ and real-time quality monitoring in 
AM. 

Analysis of the classification errors can be performed by considering the non-diagonal elements in Table 2 
(the rows). For example, the AE test data from the poor quality was classified with an accuracy rate of 89% 
and so it has the lowest error rate. The classification error is the highest (7%) for the medium quality and the 
lowest (4%) for the highest quality. The situation is completely invers for the high quality even though the 
classification errors for the medium and poor qualities are almost identical.  

It is interesting to note in Table 2 that for the medium quality, the classifications errors decrease as the 
differences in the laser scanning speed increase. For the high quality, despite having almost identical 
classification errors, this still holds true. However, this is not true for the poor quality (800 mm/s) where the 
classification errors are the highest (7%) with the medium quality (300 mm/s) and lowest (4%) with the high 
quality (500 mm/s). Hence, we can conclude that the laser scanning velocity does not have an impact on the 
self-extraction of the distinct features in the SCNN. 

When considering the porosity level, it is obvious from Table 2 that the classifications errors decrease as 
the differences in porosity increase. This was expected since our approach was based on the fact the defects, 
and in particularly, the amount of defects, in this case porosity, has an impact on the self-extraction of the 
distinct features in the SCNN. 

 

Table 2. Classification tests accuracy for the SCNN 

                                                Ground truth       Test 

category                                    

High quality Medium quality Poor quality 

High quality (0.07 ± 0.02 %, 500 mm/s, 79 J/mm3)  83 9 8 

Medium quality (0.3 ± 0.18 %, 300 mm/s, 132 J/mm3) 12 85 5 

Poor quality (1.42 ± 0.85 %, 800 mm/s, 50 J/mm3) 4 7 89 

5. Conclusions 

This contribution investigated the feasibility of a very innovative approach which combines acoustic 
emission (AE) with machine learning (ML) for in situ and real-time monitoring of additive manufacturing 
(AM) processes. For this feasibility study, an industrial commercially available Concept M2 equipped with a 
fiber laser (1071 nm) operating in continuous mode was used. The acoustic sensor selected was a fiber Bragg 
grating (FBG) due to its high sensitivity and it was installed directly inside the process chamber, 20 cm away 
from the processed zone. The material was a CL20ES stainless steel (1.4404 / 316L) with a particle size 
distribution ranging from 10 to 45 μm. 

A cube with dimensions 10x10x20 mm
3
 was produced in a N2 atmosphere. During the experiment, the 

laser power P was 125 W, the hatching distance h was 0.105 mm and the layer thickness t was 0.03 mm were 
kept constant.  
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Three laser scanning velocities were selected to give three levels of quality levels in terms of porosity. The 
porosity concentrations were 0.07 ± 0.02 % (high quality; 500 mm/s; 79 J/mm

3
), 0.3 ± 0.18 % (medium 

quality; 300 mm/s; 132 J/mm
3
), and 1.42 ± 0.85 % (poor quality; 800 mm/s; 50 J/mm

3
). The recorded AE 

signals were grouped accordingly. 
A spectral convolutional neural networks (SCNN) was trained and tested on two different datasets. The 

Daubechies wavelet with ten vanishing moments was used to decompose all signals and the energies of the 
narrow frequency bands were taken as acoustic features.  

The classification accuracy was in the range of 83-89%. These results show that there are distinct AE 
features for each manufacturing quality. The extracted features can be differentiated with machine learning 
technique. Taking into account that it is only the first feasibility study, the classification results can be 
considered as very promising and this demonstrated that our very innovative approach, which combines 
acoustic emission and machine learning, has high potential to be used for in situ and real-time monitoring of 
AM process.  

References 

Bland, S., Aboulkhair, N.T., 2014. Reducing porosity in additive manufacturing, Met. Powder Rep. 70(2), p. 77, doi: 

10.1016/j.mprp.2015.01.002.  
Daubechies, I., 1992. Ten Lectures on Wavelets; CBMS-NSF Regional Conf. Series in Appl. Mat., doi: 10.1137/1.9781611970104 
Everton, S.K., Hirsch, M., Stravroulakis, P., Leach, R.K., Clare, A.T., 2016. Review of in-situ process monitoring and in-situ metrology for 

metal additive manufacturing, Materials and Design 95, p. 431, doi: 10.1016/j.matdes.2016.01.099. 
Frazier, W.E., 2014. Metal Additive manufacturing: a review, Journal of Materials Engineering and Performance 23, p. 1917. doi: 

10.1007/s11665-014-0958-z.  

Gu, D.D., Meiners, W., Wissenbach, K., Poprawe, R., 2012.  Laser additive manufacturing of metallic components: materials, processes 
and mechanisms, Int. Mat. Rev. 57, p.133, doi: 10.1179/1743280411Y.0000000014. 

Guessasma, S., Zhang, W., Zhu, J., Belhabib, S., Nouri, H., 2015. Challenges of additive manufacturing technologies from an optimisation 

perspective, International Journal of Simulation of Multisci. Des. Optim. 6, p. A9, doi: 10.1051/smdo/2016001.  
Kashyap, R., (2010). Fiber Bragg Gratting, 2nd Ed. Elsevier, ISBN: 978-0-12-372579-0. 
Khairallah, S.A., Anderson, A.T., Rubenchik, A., King, W.E., Livermore, L., 2016. Laser powder-bed fusion additive manufacturing: Physics 

of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Materailia 108, p.36, doi: 
10.1016/j.actamat.2016.02.014.  

King, W.E., Anderson, A.T., Ferencz, R.M., Hodge, N.E., Kamath, C., Khairallah, S.A., Rubenchik, A.M.: Laser powder bed fusion additive 

manufacturing of metals; physics, computational, and materials challenges, Appl. Phys. Rev. 2,  041304 (2016), doi: 
10.1063/1.4937809. 

Mathieu, M., Henaff, M., Lecun, Y., 2014. Fast training of convolutional networks through FFTs, in Int. Conf. Lear. Repres. (ICLR2014), 

CBLS, p. 1, paper at: https://arxiv.org/abs/1312.5851.  
Moylan, S., Slotwinski, J., Cooke, A., Jurrens, K., Donmez,  M.A., 2014. An additive manufacturing test artifact, Journal of Res. Natl INST 

Stan 119, p. 429,  doi: 10.6028/jres.119.017.   

NGuo, N., Leu, M., 2013. Additive manufacturing: technology, applications and research needs, Front.Mech. Eng. 8(3), p. 215, doi: 
10.1007/s11465-013-0248-8. 

Ramakrishnan, M., Rajan, G., Semenova, Y., Farrell, G., (2016). Overview of fiber optic sensor technologies for strain/temperature 

sensing applications in composite materials. Sensors 16(1), p. 99, doi: 10.3390/s16010099.  
Saeidi, F., Shevchik, S.A., Wasmer K., 2016. Automatic detection of scuffing using acoustic emission, Tribol. Int. 94, p. 112, doi: 

10.1016/j.triboint.2015.08.021. 

Sharratt, B.M., 2015. Non-Destructive Techniques and Technologies for Qualification of Additive Manufactured Parts and Processes: A 
Literature Review, Contract Report DRDC-RDDC-2015-C035, available at: cradpdf.drdc-rddc.gc.ca/PDFS/unc200/p801800_A1b.pdf  

Shevchik, S.A., Meylan, B., Mosaddeghi, A., Wasmer, K., 2017a. Acoustic characterization of solid materials pre-weakening using electric 

discharge”, Submitted IEEE Trans. Ind. Electronics. 
Shevchik, S.A., Saeidi, F., Meylan, B., Wasmer, K., 2016. Prediction of failure in lubricated surfaces using acoustic time-frequency 

features and random forest algorithm, IEEE Trans. Ind. Informat., doi: 10.1109/TII.2016.2635082. 

 Shevchik, S.A., Kenel, C., Leinenbach, C, Wasmer, K., 2017b. Acoustic emission for in situ quality monitoring in additive manufacturing 
using spectral convolutional neural networks. Submitted to Add. Manuf. 

https://dx.doi.org./10.1016/j.mprp.2015.01.002
https://dx.doi.org./10.1137/1.9781611970104
https://dx.doi.org./10.1016/j.matdes.2016.01.099
https://dx.doi.org./10.1007/s11665-014-0958-z
https://dx.doi.org./10.1179/1743280411Y.0000000014
http://dx.doi.org/10.1051/smdo/2016001
http://dx.doi.org/10.1016/j.actamat.2016.02.014
https://dx.doi.org./10.1063/1.4937809
https://arxiv.org/abs/1312.5851
http://dx.doi.org/10.6028/jres.119.017
https://dx.doi.org./10.1007/s11465-013-0248-8
https://dx.doi.org./10.3390/s16010099
https://dx.doi.org./10.1016/j.triboint.2015.08.021
https://dx.doi.org/10.1109/TII.2016.2635082


 7 

Shifeng, W., Shuai, L., Qingsong, W., Yan, C., Sheng, Z., Yusheng, S.: Effect of mol-ten pool boundaries on the mechanical properties of 

selective laser melting parts. J. Mater. Process. Tech. 214(11), 2660-2667 (2014), doi: 10.1016/j.jmatprotec.2014.06.002.  
Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P., 2013. The emerging field of signal processing on graphs: 

Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Proc. Mag. 30(3), p. 83, doi: 

10.1109/MSP.2012.2235192.  
Tammas-Williams, S., Zhao, H., Léonard, F., Derguti, F., Todd, I., Prangnell, P.B.: XCT analysis of the influence of melt strategies on defect 

population in Ti–6Al–4V components manufactured by selective electron beam melting. Mater. Charact. 102(4), 47-61 (2015), doi: 

10.1016/j.matchar.2015.02.008.  
Tapia, G., Elwany, A., 2014. A review on process monitoring and control in metal-based ad-ditive manufacturing, Journal of Manufact. 

Science and Engineering 136, p. 10, doi: 10.1115/1.4028540. 

Tazebay, M.V., Akansu, A.N., 1995. Adaptive sub-band transforms in time-frequency excisers for DSSS communications systems, IEEE 
Trans. Signal Proc. 43(11), p. 2776, doi: 10.1109/78.482125.  

Thijs, L., Verhaeghe, F., Craeghs, T., Humbeeck, J.V., Kruth, J.P., (2010). A study of the microstructural evolution during selective laser 

melting of Ti–6Al–4V,  Acta Meter. 58(9), p. 3303, doi: 10.1016/j.actamat.2010.02.004.  
Thompson, A., Maskery, I., Leach, R.K., 2016. X-ray computed tomography for additive manufacturing: a review, Meas. Sci. Technol. 

27(7), p. 17, doi: 10.1088/0957-0233/27/7/072001. 

Zhai, Y.W., Lados, D.A., Lagoy, J.L., 2014. Additive manufacturing: making imagination the major limitation, Journal of O M 66(5), p. 808, 
doi: 10.1007/s11837-014-0886-2. 

https://dx.doi.org/10.1016/j.jmatprotec.2014.06.002
https://dx.doi.org./10.1109/MSP.2012.2235192
https://dx.doi.org./10.1016/j.matchar.2015.02.008
https://dx.doi.org./10.1115/1.4028540
https://dx.doi.org./10.1109/78.482125
https://doi.org/10.1016/j.actamat.2010.02.004
https://dx.doi.org/10.1088/0957-0233/27/7/072001
http://dx.doi.org/10.1007/s11837-014-0886-2

