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Abstract 

A particular challenge for welding 22MnB5 and DP800 are the coatings of each steel sheet. As a prevention of oxidation 
during press-hardening 22MnB5 sheets are protected with an aluminum silicon coating. The dual phase steel DP800 is 
zinc coated in many cases. In this described case the steel sheets are hot-dip galvanized. The evaporation temperature of 
zinc is below the melting temperature of steel. For that reason a zinc degassing gap between the sheets is necessary for 
welding in overlap configuration.  
At BIAS a laser-GMA-hybrid welding process was established for welding 22MnB5 to DP800. With this process 
combination weld seams reach a strength exceeding the strength of the heat affected DP800. Tensile tests prove yield 
strength of 800 N/mm² with failure location in the heat affected zone of DP800.  
The laser beam was oscillated 0.7 mm transverse to the feed direction with a frequency of 200 Hz. A feed rate of 
3 m/min was realized. The laser beam was able to vaporize zinc 5 mm ahead of the GMA-process which was carried out 
with a wire feed rate of 14 m/min. For this hybrid welding process a 1 mm thick G3Si1 wire was used.  
Occurrence of pores and spatters could be avoided by a gap of 0.4 mm between overlapping sheets. The aluminum 
silicon coating of 22MnB5 accumulates at the seam tip.  
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1. Introduction 

Lightweight design for automotive industry is required in order to fulfill environmental protection goals. A 
new approach of lightweight constructions deals with high strength steel. Especially presshardened steel 
sheets gain importance in the sector. These new ultra high strength alloys, like 22MnB5, are the material of 
modern hot formed structural elements, like the B-pillar. Because of its high strength wall thicknesses can be 
reduced and material and weight is saved. According to Göschel et al. [Gös11], presshardened steels reduces 
cycle time by higher process efficiency and less process steps. New alloys need appropriate joining concepts. 
According to Larsson et al. [Lar09] there is a special need for welding of presshardened steels by automotive 
industry. Kim et al. [Kim11] carried out investigations on weldability of 22MnB5.  

Presshardened steels are coated with AlSi in order to prevent oxidation during manufacturing. Analyses 
of weld seams show a negative influence of this coating. Aluminum and silicon form intermetallic phases 
along the fusion line. Joint strength especially for dynamic load is significantly weakened as investigations of 
Kim et al. [Kim11] proof. This weakening is mainly caused by agglomeration of the coating at the seam 
solidification line. Intermetallic phases occur due to the contact of steel and aluminum and therefore 
induced diffusion processes. Hybrid welding combining gas metal arc welding (GMAW) and laser beam 
welding is already well known in industrial applications. Advantages of combining these processes were 
investigated by Cui [Cui91]. Increased welding speed and penetration depth compared to single process 
GMAW are possible. Regarding a laser beam welding, process combination achieve higher gap bridgeability 
according to Bagger and Olsen [Bag05]. Aalderink et al. [Aal07] confirm improved gap bridgeability for hybrid 
welding compared to regular laser beam welding. It is shown that a hybrid laser GMA welding is capable of 
bridging a 1 mm gap in case of 2.1 mm aluminum sheets. Cassalino et al. [Cas13] investigated hybrid welding 
of aluminum. Their results show that laser leading configuration achieves deeper penetration and higher 
process velocity than with arc leading configuration. Amongst others, these advantages are used for several 
welding operations on different materials. Verwimp and Gedopt [Ver07] were using this set-up for welding 
aluminum. Welding steel by Grünenwald et al. [Grü10] and even welding of multi-material joints of steel and 
aluminum by Walter et al. [Wal08] were applied with this configuration. 

Positive effect of combining laser and arc welding is explained by Cui [Cui91] with the laser induced 
plasma. According to this work, the laser beam has stabilizing influence on the arc welding process. Stute et 
al. [Stu07] proofed this effect even with very low laser energy input of a few hundred watts. On the other 
hand, Rippl [Rip08] used hybrid welding process with multi kilowatt lasers which allow T-joint welding of 
15 mm thick steel sheets without any weld preparation. 

2. Experimental 

2.1. Material 

Table 1 – chemical composition of used materials. General information of EWM (2014) and ThyssenKrupp Steel (2014) 

Material C Si Mn P S 
Al 

(min) 
Nb Ti Cr+Mo B 

DP800 0.18 0.24 1.7 0.014 0.004 0.04 0.05 0.05 0.56 0.0001 

22MnB5 0.25 0.4 1.4 0.025 0.01 0.015 0.1 0.05 0.5 0.005 

G3Si1 0.08 0.9 1.5 0.015 0.012 - - -   - 

  values in weight percent 
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For this results ultra-high strength 22MnB5 and DP800 steel sheets with thickness of 1.5 mm were 
welded. For the GMA welding G3Si1 (1.5125) filler wire was used with a diameter of 1 mm. 

2.2. Set-Up 

Investigations on laser GMA hybrid welding of 22MnB5 steel sheets and zinc coated DP800 in overlap 
configuration were carried out using an IPG YLR 1000 SM single mode fiber laser and an EWM alphaQ 552 
GMAW source. Additionally a Phoenix drive wire feeder and an Abicor Binzel WH 535 Hybrid GMAW torch 
were used. This power supply and GMAW peripheries provide pulsed arc welding for the hybrid process. 

The single mode laser provides up to 1 kW output power using a fiber with a diameter of 15 µm. For these 
shown experiments an optical set-up with a collimation length of 160 mm and a focal length of 200 mm were 
installed. A spot size of 24.5 µm in focal plane was measured with a Primes MicroSpotMonitor. Welding was 
carried out with the laser beam focused on the bottom sheet surface. Additional laser beam oscillation was 
realized with a DC-ILV-Scanner by Co. Arlt. This system enables oscillating the laser beam transverse to the 
welding direction. 

In figure 1 principle of the process arrangement is demonstrated. Fillet welds on steel sheets with an 
overlap of 16 mm according to SEP 1220 [SEP11] were welded. A fillet weld angle of α = 30° is necessary. 
Laser beam irradiation was kept under an angle of βlaser = 20° whereas GMAW torch had an inclination angle 
of βtorch = 15°. Laser beam oscillation was performed with a constant frequency of fS = 200 Hz and an 
amplitude of 2AS = 0.7 mm transverse to the welding direction. 

Positioning of the laser beam and the GMAW torch were kept constant throughout these experiments. 
Welding velocity and laser beam oscillation amplitude and frequency were also constant. Values of these 
parameters are given in table 1. A shielding gas composed of 82 % argon and 18 % CO2 was used with a flow 
rate of 15 l/min for these experiments. 
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Figure 1 – illustrations for process parameters [Küg14] 
 
Welds with a constant gap were realized. Therefore, five spacers were placed between the sheets. This 

guarantees constant gap conditions over the whole weld seam length and simultaneously does not influence 
heat conduction too much.  

2.3. Method 

A variation of the gap sizes was investigated. Gap sizes were set 0.4 mm and 0.6 mm. Subsequently, 
specimens were analyzed by cross sections and tensile testing. Table 2 presents the parameters which were 
kept constant during the investigations. 
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Table 2 – process parameters 

parameter  unit value  parameter  unit value 

Laser power PL kW 1  Process velocity vp m/min 3 

Focus height fz mm 0  Hybrid process movement dy mm 0 

Electrode stickout  mm 18  Fillet weld angle α ° 30 

Arc voltage U V ~ 30  Laser beam inclination angle βlaser ° 15 

Voltage correction ∆U V + 2  Laser beam oscillation frequency fS Hz 200 

Arc trim  % + 10  Laser-GMAW-distance dx mm 5 

Arc polarity   DCEP  Laser beam oscillation amplitude 2AS mm 0.7 

Torch angle  βtorch ° 20      
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3. Results and Discussion 

3.1. Welding behavior 

The most challenging task for thermal welding of zinc coated steel is the evaporating zinc which causes 
pores, spatters and other welding defects in the joint. In figure 2 typical joint defects are shown by using 
zero gap configurations. The zinc cannot evaporate so that the vapor influences the flow behavior of the 
melt pool. A lack of melt on the upper sheet occurs. Therefore, the seam is insufficient for transmissions of 
forces. Moreover, a higher amount of welding fume deposit on the steel surface can be observed. 

 
Figure 2: Overlap welded material mix DP800 to 22MnB5  

Therefore, two challenges can be defined. First the zinc coating which have to be removed or even 
evaporated in the joining zone and secondly the Al-Si coating of 22MnB5 which also can cause welding 
defects due to the formation of intermetallic phases.  

 
 
 
 



  

 
In figure 3 a welded steel material mix with the zinc coated DP800 as upper sheet is shown. 

 
Figure 3: Overlap welded material mix DP800 to 22MnB5  

 
By using the developed joining process set-up the positioning of the processes to each other can be 

varied. Thus, it is possible to remove the zinc layer as well as melting the Al-Si coating in front of arc process 
with the preparatory laser beam. Figure 2 demonstrates a defect free joining using a gap of 0.4 mm. The zinc 
can be evaporated through the gap. Furthermore, the preheated or even melted surface stabilizes the arc. 
The joining speed can be increased up to 3 m/min in this configuration. 

3.2. Metallography 

 
Figure 4: Cross sections of material mix with 0.4 mm gap size (A; B) and 0.6 mm gap size (C) 

The joints were characterized using cross sections. Figure 4 demonstrates typical joint appearances. The 
joints are free of pores. Furthermore, no other welding defects like cracks or inclusions occur. Moreover, 
figure 4 also presents the influence of the gap size between sheets. As described above a gap is necessary 
for evaporating zinc to realize a defect free joint. By using a 0.4 mm gap the melt pool has a width of 



  

4.55 mm and a penetration depth of 0.5 mm. For the specimens A and B the same parameters were used to 
address the reproducibility. The critical crack length, which is the minimum seam section length, is quite 
similar to the sheet thickness. By adjusting a gap of 0.6 mm the wetting length of the joint is decreased 
significantly to 2.5 mm. A penetration depth of 0.75 mm can be reached which is an increase of 50 % 
compared to the 0.4 mm gap. 

In front of the melt pool an agglomeration of the AlSi coating can be observed. This effect is also 
described in the state of the art. The coating was melted by the process and displaced by the filler material. 
Afterwards the AlSi coating components in the melt are agglomerated at the tip of the weld. A negative 
aspect of this agglomeration is that cracks can be initiated which results in a failure of the joint. 

To get a more detailed overview micro CT was carried out at BIAS. Figure 5 shows a characteristic layer of 
the welded specimen. Sectional B demonstrates a longitudinal cross section of the weld. In welding direction 
specimen shows waviness based on meld pool dynamics resulting from high process velocity. No pores or 
cracks could be detected over the whole seam length.  

 

 
Figure 5: Computed tomography of a welded specimen 

3.3. Mechanical properties  

Beside metallographic aspects tensile test were carried out to analyze the tensile strength depending on 
position in the specimen. The specimens were prepared according to SEP 1220. Thus, the results can be 
compared with other joining technologies. In figure 6 the results of the tensile tests are given. At the 
beginning of the joint smaller gaps can reach much higher tensile strength. This problem was based on an 
inconstant process at the start. At a position of 130 mm all specimens reach similar values of approximately 
800 N/mm². The effects point out high process tolerance concerning gaps. At the weld seam end lower 
tensile strength is achieved. 



  

 
Figure 6: Results of tensile tests 

3.4. Surface analysis 

In order to analyze the surface conditions after welding specimens were analyzed by EDX. In figure 7 
results for the elements zinc and oxygen are presented. Focusing on areas close to the melt pool both 
elements can be detected. Directly beside the melted area oxygen is dominating the surface. Zinc layer was 
evaporated by the welding process. Subsequently after welding the area of evaporated zinc is oxidized by 
environmental atmosphere. By increasing the distance to the melt pool the surface is still coated by zinc.  

 
Figure 7: EDX of upper sheet top surface after welding 



  

4. Conclusion 

Joining material mixes of different steels is still challenging. By using a combination of laser and arc 
processes a control of the zinc evaporation is achieved and defect free seams can be welded. This can be 
achieved by using joining gaps. Thus, the arc process is stable and is not influenced by evaporating zinc. 
Furthermore, high process velocity and gap tolerances can be achieved. Additionally, state of the art findings 
that a gap is necessary for thermal joining of zinc coated steel sheets is approved also for a combination of 
DP800 and 22MnB5+AS. 
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