
  

 

Lasers in Manufacturing Conference 2023 

An intelligent quality inspection system  
to detect laser welding defects 

Patricia M. Dolda,b,*
1, Meiko Boleya, Fabian Bleiera, Ralf Mikutb 

aBosch Research, Robert Bosch GmbH, Robert-Bosch-Campus 1, 71272 Renningen, Germany 
bInstitute for Automation and Applied Informatics (IAI), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1,  

76344 Eggenstein-Leopoldshafen, Germany 

Abstract 

This paper deals with a laser welding process with a high welding speed of 500 mm/s and thin metal plates with a thickness 
of 75 µm. While the welding process is observed by a photodiode and a high-speed camera in-sito, various in production 
occurring defects such as spatter, gap or defocus were provoked. To detect welding defects, deep learning has achieved 
great success and therefore is used as a baseline. However, the results of deep neural networks are difficult to interpret, 
and their inference times are long. Therefore, our approach empirically extracts and selects relevant features and classifies 
using decision trees. Results show that our approach leads to competitive results to deep neural networks, but with the 
advantage of more interpretable results and shorter inference times.  
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1. Introduction  

Laser welding is a key production technology, because of its ability for precise and fast welding. 
Unfortunately, laser welding processes often are challenging, which leads to welding defects. To quickly detect 
defects in production, quality monitoring is desired in industrial processes. For quality monitoring different 
sensors like photodiodes (PD) (Paleocrassas and Tu, 2010), spectrometers (Garcia-Allende et al, 2009), X-ray 
sensors (Shevchik et al., 2020), optical coherence tomography (Baader et al., 2021) or high-speed cameras 
(HSC) (Jäger and Hamprecht, 2008) are used. The acquired signals can then be analysed by data-driven 
methods like support vector machines (You et al., 2014), decision trees (DT) (Hongwei et al., 2011; Moinuddin 
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et al., 2021), random forest algorithms (Wu, 2014) or neural networks (NN) (Zhang et al., 2020). On the one 
hand, NN have achieved great success in classification tasks; on the other hand, they still have a black box 
character. In contrast, classical machine learning algorithms like DT provide the advantage of interpretable 
results. For example, DT can give an importance to features when making a prediction. The important features 
could then be interpreted by domain experts or could be used to better understand the data and the DT 
prediction (Knaak et al., 2018; You et al., 2018).  

In the present paper, we classify welding defects based on PD and HSC data. Our main contributions are: 
• multi-class classification of laser welding defects and comparison with binary classification in a use case 

similar to Dold et al., 2022 and Dold et al., 2023, 
• usage of classical machine learning including feature engineering and DT and comparison with NN and 
• visualization and interpretation of the DT models for better data and model understanding. 

2. Data set 

The data were acquired in the laboratory. The experimental setup is explained in detail in Dold et al., 2022 
and Dold et al., 2023. In short, during the welding process of two thin metal plates with a thickness of 75 µm, 
photodiode (PD) signals with a sampling rate of 250 kHz and synchronous high-speed camera (HSC) images 
with a sampling rate of 20 kHz were captured. In total, 59 metal plate pairs (later referred to as experiments) 
were welded: 9 under reference conditions and 50 with inserted anomalies. While Dold et al., 2023 
distinguished between reference and anomaly, the present paper additionally distinguishes between different 
anomalies. Figure 1 shows schematically the different categories and the captured sensor data. Thereby, the 
green box includes the reference category and the red box the anomaly categories. The welding direction in 
the shown HSC images is from bottom to top. The PD provides voltages 𝑉𝑉 over time 𝑡𝑡. Because of the different 
sampling rates of the sensors, while one HSC image is acquired, there are several PD voltages. Several in 
production occurring cases were readjusted:  

Fig. 1. Six different categories have been considered: green box: reference welding (a); red box: different anomalies have been introduced 
in the laser welding process to provoke defects. In (b) oil was inserted between the plates, which led to spatters. In (c) a gap between the 
plates was inserted. (d) was welded with one plate only, in (e) the laser was defocused and in (f) the laser power was changed. 

𝑉𝑉 

𝑡𝑡 
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(a) For the reference welding, the metal plates were perfectly positioned on top of each other. In the HSC 

image the keyhole is visible.  
(b) A thin film of oil was applied between the two plates to simulate contaminations. Because of the high 

temperatures of the laser, the oil expanded and evaporated. Therefore, the material of the plates 
ejected, so the process spattered. 

(c) A gap was inserted between the two plates. In the HSC image a more widely opened capillary is visible. 
The standard deviation of the PD signal compared the reference category fell. 

(d) Only one plate was welded. Thereby, the workpiece was welded through, which led to a lower light 
reflection. Therefore, the intensity values in the HSC image and the voltages in the PD signal decreased. 

(e) The laser beam hit the workpiece defocused. Compared to the reference category, the HSC images 
show a bigger capillary radius, and the PD signals show higher voltages. 

(f) The laser power was changed. 
 

The number of chunks of the categories are given in Table 1. A chunk consists of one HSC image and 
13 corresponding PD samples. The average number of training chunks is given by 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ; the average 
number of test chunks by 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and both together as 𝑛𝑛.  

3. Classification approaches 

To distinguish between the introduced categories, different classification approaches have been applied. 
Firstly, features of the PD and HSC data were extracted. After that, the extracted features were used for 
classification with decision trees (DT). As a comparison, a deep learning approach consisting of a neural 
network (NN) was used. All models were implemented in python. Moreover, for all models a 5-fold cross-
validation was applied. 

3.1. Feature engineering 

Features of the PD signals were extracted in two ways: manually (7 features) and automated (794 features) 
with the python toolbox tsfresh (Christ et al., 2018). A detailed description of the feature extraction can be found 
in Dold et al., 2023. For the HSC images, statistical (8 features) and geometrical (165 features) features were 
selected. The geometrical features were calculated depending on a threshold ℎ  ∈ [0, 255]. Thereby, two 
different types of thresholds ℎ , namely absolute thresholds ℎ𝑡𝑡  that are the same for each image, and 
thresholds ℎ𝑞𝑞 based on quantiles where the value can differ for each image. Based on the threshold, a binary 
mask image was calculated for every HSC image. The mask has the value 0 where the pixel values in the HSC 

Category 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝑛𝑛 

Reference 148425 37106 185531 

Spatter 25051 6263 31314 

Gap 30895 7724 38619 

One plate 27044 6761 33805 

Defocus  37862 9465 47327 

Power 26516 6629 33145 

Total 295793 73948 369741 
 

Table 1. Number of chunks of the data set. Given are the average numbers over 5 folds of a cross-validation. 

 



 LiM 2023 - 4 

images are smaller than ℎ, and 1 where the pixel values are bigger or equal. Based on the mask, the following 
features were extracted: area, number of regions, area of the biggest region, ratio of area of the biggest region 
and area, convex hull, ratio of area and convex hull, circumference, ratio of circumference and area, area of a 
fitted ellipse, length of the ellipse and width of the ellipse. Figure 2 visualizes the features at  ℎ𝑡𝑡 = 40 for the 
categories reference, spatter, and gap. In (a) the original images, already known from Figure 1, are shown. (b) 
shows the binary mask, from which the area and the number of regions were derived. (c) shows the biggest 
region of the mask and (d) the circumference of the mask. (e) shows the convex hull, which mainly differs from 
the circumference when there are spatters. In (f) the ellipse fit of the biggest region is shown, from which the 
length 𝑙𝑙 and the width 𝑤𝑤 of the ellipse were derived. Differences in the features depending on the category 
are visible, e.g. the number of regions and the convex hull increase for a spattering process. 

3.2. Decision trees 

After feature extraction, decision trees (DT) were used for classification. The DT were implemented with 
the python library scikit-learn (Pedregosa et al., 2018). Hyperparameters of the DT, namely the maximum 
depth of the tree and the minimum number of samples required to split an internal node, were found with a 
grid search. The importance of each feature in the DT was calculated to reduce the number of input features. 
To build the final DT the features that were at least under the ten most relevant features in one of the trees 
of the 5-fold cross-validation were chosen. 

3.3. Convolutional neural networks 

Besides feature engineering with following DT classification, the HSC and PD data were classified with 
convolution neural networks. For the PD data CNN1 and for the HSC images RN50 based on ResNet (Ke et al.,  
 

Fig. 2.  Geometrical feature extraction of the HSC images at ℎ𝑡𝑡 = 40 for the three categories reference (first row), spatter (second row) 
and gap (third row). (a) shows the original image. In (b) the binary mask is visualized. (c) shows the biggest region of the binary mask, (d) 
the circumference of the mask and (e) the convex hull of the mask. In (f) the ellipse fit of the biggest region is shown, from which the 
length 𝑙𝑙 and the width 𝑤𝑤 were derived.  
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2016) was used. The concrete architectures and training parameters of CNN1 and RN50 are described in Dold 
et al., 2023. However, instead of the sigmoid activation function, a softmax layer is used at the output due to 
multi-class classification. 

4. Results and discussion 

The classification results based on feature extraction with DT are compared with results from NN. To 
understand a DT model’s prediction, the importances of the features, of which a DT is build, are calculated. 
This is rather difficult for deep learning approaches consisting of NN. The NN classification consists of several 
thousands of computational operators and, therefore, it is difficult to determine which parts of an input 
sample lead to a certain decision. 

4.1. Multi-class and binary classification 

Table 2 shows the classification results, namely accuracy, precision, recall and F1-score of different models 
based on the PD and the HSC data. Thereby, the mean over the 5 folds of the cross-validation is given. To 
calculate the metrices in the multi-class case, micro averaging was used. Table 2 compares 1) multi-class with 
binary classification, 2) experiment split (∗) with random split (+), and 3) DT with NN. Thereby, binary 
classification refers to only having the two categories reference and anomaly (see Fig. 1 green and red boxes) 
and multi-class to all six categories. Besides a training and test split based on the welding experiments (∗), as 
described in Dold et al., 2023, a random split (+) of the samples was implemented. The split according to 
experiments (∗) is closer to the production scenario as algorithms are trained on data of some workpieces and 
then applied to data of other ones. However, a random split (+) leads to a more similar distribution of the 
training and test data.  

For the PD DT models (I and II), the first line of the evaluation metrices refers to the features extracted from 
tsfresh and the second line to the seven manually extracted features. The accuracy differs by 0.48% for binary 
classification and 1.82% for multi-class classification. As the results are competitive, the manually extracted 
features already capture most information to distinguish between the categories. Comparing the PD results (I 
and II), the multi-class classification performs 9.00% (tsfresh features) and 10.34% (manually features) worse  

   PD    HSC   

Number Model Accuracy 
(%) 

Precision 
(%) 

Recall  
(%) 

F1-score 
(%) 

Accuracy 
(%) 

Precision 
(%) 

Recall 
 (%) 

F1-score 
(%) 

I DT binary (∗) 
 

88.18 
87.70 

88.31 
86.94 

88.03 
88.79 

88.14 
87.80 

93.81 91.43 96.88 94.05 

II DT multi (∗) 
 

79.18 
77.36 

79.18 
77.36 

79.18 
77.36 

79.18 
77.36 

89.50 89.50 89.50 89.50 

III DT binary (+) 82.97 76.11 89.51 82.27 94.13 91.76 97.03 94.32 

IV DT multi (+) 80.35 80.35 80.35 80.35 90.58 90.58 90.58 90.58 

V NN binary (∗) 89.84  86.86 94.02 90.21 96.50 95.13 98.18 96.61 

VI NN multi (∗) 79.42 79.42 79.42 79.42 92.90 92.90  92.90 92.90 

Table 2. Classification results averaged over the 5 folds of the cross-validation. Given are accuracy, precision, recall and F1-score for the 
different models, which were created based on the PD and HSC data. (∗) indicates a split of training and test set based on experiments 
and (+) indicates a random split independent of experiments. For the PD models DT binary (∗) and DT multi (∗), the first line of the 
evaluation metrices refers to the features extracted from tsfresh and the second line to the seven manually extracted features. 
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than the binary classification. Regarding the different splits, the random split (+) slightly outperforms the 
experiment split (∗) for the multi-class case but performs worse for the binary case. The NN based models (V 
and VI) slightly outperform the DT; but both DT and NN are competitive. 

For the HSC models (I and II), binary classification leads to an accuracy of 93.81% and multi-class 
classification to 89.50%. Compared with the results of the PD models, the HSC models perform 5.63% better 
for the binary case and 10.32% better for the multi-class case. The random split (+) slightly outperforms the 
experiment split (∗). As for the models based on PD data, the NN perform better but the results still are 
competitive.  

Table 3 shows the confusion matrices of multi-class classification with DT. The left matrix results from the 
model based on PD data and the right confusion matrix based on HSC data (see II of Tab. 2). The categories 
are (a) reference, (b) spatter, (c) gap, (d) one plate, (e) defocus, and (f) power (see Fig. 1). Given are the 
averages over the 5 folds of the cross-validation. The left matrix shows that the model misclassifies some gap, 
defocus and power samples as reference. Furthermore, the model has difficulties to distinguish gap from one 
plate. In contrast, there is almost no misclassification of reference and one plate, one plate and defocus, one 
plate and power, or gap and defocus. The right matrix shows that the model based on HSC data also 
misclassifies some defocus or power samples as reference. However, compared with the left matrix, there are 
fewer misclassifications. 

4.2. Feature importances and interpretation of decision trees 

To better understand a DT model’s prediction, evaluation of the importances of the features is useful. The 
feature importances give a score to each feature of which a DT model is built. So, the scores give the 
importance of each feature when making a prediction. In the following, the feature importance is defined 
mathematically. Therefore, first the Gini impurity 𝑃𝑃 at a node is defined as 

 
𝑃𝑃 = 1 − ∑ (𝑠𝑠𝑐𝑐)2𝑐𝑐∈𝐶𝐶 ∈ [0,0.5],         (1) 

 
with the categories 𝐶𝐶 and the proportion of samples 𝑠𝑠𝑐𝑐  of category 𝑐𝑐 at the node. The impurity reduction 𝑅𝑅𝑚𝑚 
at node 𝑚𝑚 with two child nodes then is 

 True 

 PD II (a) (b) (c) (d) (e) (f) 

Pr
ed

ic
te

d 

(a) 35256 877 1115 0 1272 2786 

(b) 97 3287 263 245 348 312 

(c) 602 532 4369 1105 18 842 

(d) 1 462 1343 5403 0 12 

(e) 258 651 8 0 7630 73 

(f) 892 454 626 8 197 2604 

 ∑ 37106 6263 7724 6761 9465 6629 

 

 True 

 HSC II (a) (b) (c) (d) (e) (f) 

Pr
ed

ic
te

d 

(a) 36175 825 401 0 1116 1555 

(b) 177 4265 371 149 324 219 

(c) 63 321 6642 104 4 144 

(d) 0 218 173 6503 0 15 

(e) 322 452 3 0 7968 60 

(f) 369 182 134 5 53 4636 

 ∑ 37106 6263 7724 6761 9465 6629 

 

Table 3. Confusion matrices of multi-class classification with DT. The left confusion matrix results from a model based on PD data and the 
right confusion matrix based on HSC data (see II of Tab. 2). The categories are (a) reference, (b) spatter, (c) gap, (d) one plate, (e) defocus 
and (f) power change (see Fig. 1). Given are the averages over the 5 folds of the cross-validation. 
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𝑅𝑅𝑚𝑚 = 𝑃𝑃𝑚𝑚 − �𝑁𝑁1
𝑁𝑁𝑚𝑚

𝑃𝑃1 +  𝑁𝑁2
𝑁𝑁𝑚𝑚

𝑃𝑃2�,                                      (2)

  

with the Gini impurity 𝑃𝑃𝑚𝑚 at node 𝑚𝑚 and the Gini impurities 𝑃𝑃1and 𝑃𝑃2 at the two child nodes of 𝑚𝑚. 𝑁𝑁𝑚𝑚 is the 
number of samples at node 𝑚𝑚 and 𝑁𝑁1 and 𝑁𝑁2 the sample numbers at the child nodes, respectively, so 𝑁𝑁𝑚𝑚 =
 𝑁𝑁1 + 𝑁𝑁2. With the features 𝐺𝐺, the current feature 𝑔𝑔𝑡𝑡  and the nodes 𝑀𝑀𝑔𝑔𝑖𝑖 , which perform a split on feature 𝑔𝑔𝑡𝑡, 
the feature importance 𝐼𝐼𝑔𝑔𝑖𝑖 of the feature 𝑔𝑔𝑡𝑡  of a decision tree is,  

𝐼𝐼𝑔𝑔𝑖𝑖 =
∑ 𝑅𝑅𝑚𝑚𝑚𝑚∈𝑀𝑀𝑔𝑔𝑖𝑖

∑ ∑ 𝑅𝑅𝑚𝑚𝑚𝑚∈𝑀𝑀𝑔𝑔𝑔𝑔∈𝐺𝐺 
 ∈ [0,1].                       (3) 

Because of the normalization in the denominator, the feature importances of all features add up to 1. Figure 
3 shows the interpretation of DT for multi-class classification of PD and HSC data. Firstly, in Figure 3 I the 
feature importances of the most important features are given. The features are given on the 𝑥𝑥-axis and the 
importances on the 𝑦𝑦-axis. The importances of the 5 individual folds are drawn in blue and their mean in red. 
For the PD data, the most important features include maximum, standard deviation, mean and minimum, 
which are four out of the seven manually extracted features. This is consistent with the results from Table 2, 
where the DT based on the seven manually extracted features led to competitive results to the DT based on 
automated extraction with tsfresh. Moreover, the root mean square has the highest importance. The exact 
meaning of the other relevant features can be looked up in Christ et al., 2018. It is noticeable that there is a strong 
scatter in terms of the importances between the folds. In contrast, for the HSC data, there is less scatter 
between the folds. For the HSC data, three features clearly have the highest importance (area, ℎ𝑡𝑡 = 85; ellipse 
length 𝑙𝑙, ℎ𝑡𝑡 = 10; ellipse width 𝑤𝑤, ℎ𝑡𝑡 = 85). 

Next, Figure 3 II shows the root node and one child of the DT of the first fold based on PD or HSC data. 
Thereby, the vector 𝑝𝑝 = [𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒, 𝑓𝑓] gives the percentage of samples of each category (a)-(f) (see Fig. 1). 
So, for example the first entry 𝑎𝑎 gives the percentage of samples of category (a), which is reference, in the 
considered node in relation to the total available reference samples. Besides the vector 𝑝𝑝, the second entry in 
the nodes of the DT is the split criterion. In the DT on the left based on PD data, all entries of the 𝑝𝑝 vector are 
100% as all samples are available at the beginning. The split in the root node is based on the root mean square, 
which has the highest feature importance after I. The child node then has the absolute maximum as criterion, 
which has the third highest importance after I. On the right side, there is the DT based on HSC data. The split 
feature in the root node is ellipse width 𝑤𝑤, ℎ𝑡𝑡 = 85, which is the third important feature after I. For the child 
node the split feature is ellipse length 𝑙𝑙, ℎ𝑡𝑡 = 10, which is the second important feature after I. 

Finally, Figure 3 III shows the feature in the child node over the feature in the root node from II. The feature 
values of each sample are plotted in the color of their category and different clusters are formed. Additionally, 
the decision boundaries are marked in gray. In the left plot based on the PD data, the vertical line at root mean 
square = 0.043 𝑉𝑉 separates category defocus from reference, gap, one plate and power. The entries of 𝑝𝑝 in 
the child node in II confirm that: 100% of the samples of the categories reference, gap, one plate and power 
are in that node. Moreover, 85% of the defocus samples are eliminated. The horizontal line at absolute 
maximum = 0.036 𝑉𝑉, so the criterion of the child node, splits the remaining samples further: reference and 
defocus are separated from gap, one plate and power. In the right plot based on the HSC data the criterion of 
the root node separates reference, defocus and power from gap and one element. This is also indicated by the  



 LiM 2023 - 8 

 

Fig. 3.  Interpretation of the DT for multi-class classification based on PD and HSC data. I shows the most important features with their 
feature importances. II shows the root node and one child node of the DT of the first fold. Thereby, the vector 𝑝𝑝 = [𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒, 𝑓𝑓] gives 
the percentages of samples of each category (a)-(f). III shows the feature of the child node over the feature of the root node from II. The 
feature values of each sample are plotted in the color of their category.  Additionally, the decision boundaries are marked in gray. 
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𝑝𝑝 vector. The criterion of the child node then separates gap from one plate. When comparing the PD and the 
HSC plots based on two relevant features, the HSC plot contains better separable clusters. For examples, the 
categories gap and power are hardly distinguishable in the PD scatter plot but in the HSC plot they build 
separable clusters.  

4.3. Combining photodiode and high-speed camera classifiers 

So far, the models based on PD and HSC data were considered separately. Both, models based on PD and 
HSC data, have their advantages and disadvantages: As shown in Table 2, the PD models have lower accuracies 
than the HSC models. However, as for the PD only 13 samples must be analysed compared with a whole image 
of the HSC, evaluation times are faster. As welding processing become faster, there is a need for fast but still 
precise quality inspection, so the advantages of the PD and HSC evaluation should be used together. Therefore, 
Dold et al., 2022 proposed a two-stage quality monitoring system that first analyses the PD data and only in 
case of uncertainty of that model’s decision, an analysis of the HSC data is considered. For the DT in the present 
paper, the uncertainty could be given by the fraction of samples belonging to the same category in a leaf. Dold 
et al., 2022 and Dold et al., 2023 showed that a combined classification system can reduce the computational 
effort significantly while the accuracy stays stable. 

5. Conclusion 

In the present paper, we present classification algorithms, namely decision trees (DT) and neural networks 
(NN) to distinguish welding defects based on PD and HSC data. Thereby, multi-class defect classification was 
compared with binary classification. The multi-class classification performs about 10% better on the HSC than 
on the PD data. The NN slightly outperform the DT but both approaches still lead to competitive results. 
Moreover, DT have the advantage of being easier to interpret. By calculation the feature importances of each 
feature in a DT, the most important features for prediction were found: For the PD data simple statistical 
features are important. For the HSC data the area of the keyhole and its ellipse length and width are relevant.  
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