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Abstract 

Laser cutting is an established technology for the processing of metal sheets and tubes given its elevated productivity and 
high part quality. However, external influences or variations in the process conditions may affect the quality of the final 
product. In oxidation cutting, cuts are typically evaluated by means of profile roughness whilst critical defect formation 
consists in loss of cut. Real-time estimation of the cut quality via process monitoring is of great interest since it enables 
inline evaluation of the manufactured components and identification of defected parts. Such capabilities were 
investigated during the cutting of high thickness mild steel, acquiring process emission images with a coaxial monitoring 
system and correlating them to the profile roughness via Machine Learning algorithms. Results indicate roughness 
predictions with good fitting (R2>80%) and with a Mean Absolute Error below 10 µm (𝑅𝑅𝑧𝑧 parameter).  
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1. Introduction 

Laser oxidation cutting in the current industrial scenario is one of the reference technologies for the cutting 
of mild steel sheets. The strive for intelligent sensorized machines which can exploit advanced sensing options 
to extract relevant process information is a rising topic within both the industrial and scientific communities. 
The in-situ monitoring of the laser material interaction is a fundamental aspect to derive the actual state of 
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the cutting process. Various works in literature have reported a strong correlation between process emission 
and defect formation (Levichev et al., 2021).  

Fallahi Sichani et al. exploited a coaxial monitoring set up for an adaptive control of the oxidation cutting 
process however they did not disclose a direct correlation to a quality parameter(Sichani et al., 2010). Pacher 
et al. developed an approach to estimate dross formation in real-time as an indicator of dross formation during 
the fusion laser cutting process. (Pacher et al., 2020, 2021). Alternatively, to camera-based monitoring 
approaches, integrated sensors may also be employed to diagnose the processing conditions.(De Keuster et 
al., 2007; Decker et al., 1997; Levichev et al., 2020; Schleier et al., 2018). Thermal cameras are also often 
employed to detect the temperature fields in the proximity of the laser-material interaction area to predict 
cutting conditions. (Bison et al., 2019; Levichev et al., 2022) 

Although several studies have been published on the monitoring of the oxidation laser cutting, a clear 
correlation between typical process defects, such as the profile roughness, and the observable process 
emission has not yet been established. Previous investigations have typically built the correlation between the 
signal from integrated sensors and the defects through qualitative or simple statistical relations. However, the 
use of Machine Learning (ML) approaches can allow to disclose complex relationships and provide predictions 
with a higher degree of accuracy and robustness. 

The current investigation reports a novel methodological approach for the real-time estimation of the 
profile roughness during the laser oxidation cutting process. The experimental methods and materials are 
initially reported, providing details with regards to the laser cutting system and monitoring chain. The Machine 
Learning approach for the training and testing of the real-time estimation method is then presented alongside 
with the experimental design. Finally, the results reporting the performance of the approach developed are 
shown. Quantitative measurements of the cut profile are correlated to the features extracted from the process 
emission acquired via the monitoring chain and enable a sensing architecture for the real-time estimate of the 
profile roughness. 

2. Materials and method 

2.1. Experimental set up 

An industrial laser cutting system (LC5, BLM Group, Levico Terme, Italy) was employed to perform the cuts. 
The system is equipped with a laser cutting head with a collimating lens with focal length of 100 mm and a 
focusing lens with focal length 200 mm (HPSSL, Precitec, Gaggenau, Germany). A 6 kW laser source emitting 
at λ=1070 nm from a transport fiber diameter of 100 µm was employed as the light source in the optical set 
up (YLS-6000-CUT, IPG Photonics, Cerro Maggiore, Italy). The process light is therefore focused to a minimum 
beam waist diameter of 200 µm and its position can be regulated by a translational movement of the focusing 
lens. The overall configuration of the process is reported in Table 1. 

The process chain is equipped with a coaxial monitoring system which allows to observe the process 
emission via a dichroic mirror positioned between the collimator and the focusing lens. The monitoring system 
has been presented in past publications and features an imaging camera (XiQ MQ013MG-ON, Ximea, Munster, 
Germany) filtered in the near infrared wavelength in order to acquire the process dynamics(Pacher et al., 
2020; Vasileska et al., 2022). The imaging chain observes the laser-material interaction with a spatial 
resolution of 9.6 µm/pixel over a 200 pixel x 200 pixel field of view. The system is thus configured with an 
optical magnification of 2 and was set to acquire the process emission a 750 Hz. Table 1 reports also the 
synthetic data of the monitoring chain. 

 
 



 LiM 2023 - 3 

Table 1. Specifications of the laser cutting system and monitoring chain 

Laser cutting system  Monitoring Chain 

Parameter Value  Parameter Value 

Maximum emission power, Pmax (kW) 6  Acquisition frequency, facq (Hz) 750 

Emission wavelength, λ (nm) 1070  Pixel size of camera, dpix (µm) 4.8 

Beam Parameter Product, BPP (mm*mrad) 3.722  Spatial resolution, SR (µm/pixel) 9.6 

Fiber diameter, df0 (µm) 100  Optical magnification, m (-) 2 

Focal length of collimating lens, fcol (mm) 100  Field of View, FOV (pixel*pixel) 208x208 

Focal length of focusing lens, ffoc (mm) 200    

Beam waist diameter, d0 (µm) 200    

 

2.2. Experimental design 

The aim of the experimental design was to induce quality variations on the cut profile in terms of surface 
roughness and correlate them to process emission images obtained with the coaxial monitoring equipment. 
The cut geometry of the test samples corresponded to a square with 45 mm characteristic length and rounded 
edges with a radius of 2 mm as shown in Table 2. The different sides of the cut were numbered progressively 
in order to identify any dependence on the cutting direction. The experiments were run on the same batch of 
material which corresponded to RAEX 400 mild steel with a thickness of 8 mm. The laser power was 
maintained constant at P=4 kW with a continuous wave emission mode corresponding to a duty cycle δ=100%. 
The cutting speed was varied between 1100 mm/min to 2600 mm/min with a step of 300 mm/min whilst the 
other process parameters were selected from standard literature values (Levichev et al., 2020). The upper 
boundary of the cut was set in correspondence to the loss of cut condition. The overall experimental design 
with the fixed and variable parameters is reported in Table 2.  
Table 2. Fixed and variable parameters of the experimental design 

Fixed factors Value Cut geometry 

Material RAEX 400  

 

 

 

 

 

 

 

Sheet thickness, t (mm) 8 

Laser emission power, P (kW) 4 

Assist gas O2 

  

  

Variable factors Value 

Cutting speed, v (mm/min) 1100 – 1400 – 1700 – 2000 – 2300 – 2600 

 
Every experimental condition was replicated three times to provide three separate datasets for the 

training of Machine Learning algorithms. The quality of the cut profile was characterized by means of 
roughness measurements in order to disclose the dependence with respect to the process parameters. From 
the process emission images acquired, it was possible to extract synthetic features which provided 
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information regarding the cutting conditions. These features were therefore utilized to establish a correlation 
with the measured surface roughness of the profile via different ML algorithms, aiming to identify the highest 
performing relationship. 

2.3. Material characterization 

The cut profile was characterized in accordance with standard ISO 9013:2002 by measuring the peak height 
of the profile 𝑅𝑅𝑧𝑧  with Mahr PGK profilometer (Mahr, Wuppertal, Germany). The profile roughness was 
measured at 1/3 of the sheet thickness from the top surface of the sheet. For each cut side, three profile 
roughness measurements were performed and were coordinated with the process emission images acquired 
via the coaxial monitoring set up. 

2.4. Machine Learning approach 

Features are fundamental for the successful implementation of a Machine Learning algorithm. They are 
measurable properties or attributes of the phenomenon being studied. The performance of the ML model 
developed to correlate the features to the measured roughness strongly relies on the quality of the extracted 
features. In this study, a series of geometrical features was extracted directly from the analysis of the frames 
captured from the video of the process emission. The video was acquired with the coaxial NIR camera during 
the cutting process. The single frames were stored in a temporary buffer (lookback window) which was 
exploited to engineer the features for the development of the Machine Learning algorithms. 

 
Fig. 1. (a) Process emission image (b) binarized image with a hard-threshold of 15 and (c) graphical representation of the geometrical 

features extracted from the binarized image 

Given the presence of a lookback window it was possible to increase the dimensionality of the feature 
space by calculating for each feature the mean (µ) and the standard deviation (σ). Geometrical features could 
be extracted from binary images after hard thresholding of the grayscale images at predetermined values. 
Examples of such features are the area, length, width as depicted graphically in Fig. 1 (c).  

As mentioned previously, feature selection plays a fundamental role in developing effective Machine 
Learning models. Hence, all of the proposed features were correlated with the measured profile roughness by 
means of Pearson’s coefficient. Then, redundancy between the selected features was verified to further 
reduce their number. 

In order to identify the most performing algorithm for the real-time estimation of the roughness, different 
Machine Learning models were tested using standard quality and error indicators, i.e. the R2 value, the Root 
Mean Square Error and the Mean Absolute Error defined as follows: 

𝑅𝑅2 =
∑(𝑦𝑦 − 𝑦𝑦�)2

∑�y − mean(y)�2
 (1) 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �mean((𝑦𝑦 − 𝑦𝑦�)2) (2) 

 
𝑅𝑅𝑀𝑀𝑅𝑅 = mean|𝑦𝑦 − 𝑦𝑦�| (3) 

 
The models under evaluation corresponded to standard machine learning algorithms: first order Linear 
Regression (LR), Decision Tree (DT), Random Forest (RF), eXtreme Gradient Boosting (EGB) and Multi-Layer 
Perceptron (MLP). Different configurations of the acquired datasets were exploited for the training and testing 
phase of the model predictions with respect to the measured variable. A final evaluation of the performance 
of the models was done exploiting the Leave-One-Out Cross-Validation (LOOCV). With the LOOCV, for each 
specimen belonging to the entire dataset a model is trained on all the other specimens and tested on the 
excluded one. The procedure is then iterated for all the remaining ones, keeping track each time of the model 
performance.  

3. Results 

3.1. Cut profile roughness 

The cut quality at the different cutting speeds was evaluated by means of the profile roughness in order 
to determine the trend as a function of the varied parameter. Fig. 2 shows the profile roughness for the 
different sides as a function of the cutting speed. From the results, it clearly appears that higher cutting speeds 
allow to achieve cut profiles with lower roughness. However, when cuts were performed at 2600 mm/min the 
loss of cut defect began to present itself. Only in the case of the first dataset it was possible to perform the 
cut with a cutting velocity of 2600 mm/min whereas in the other replicates of such condition resulted in a loss 
of cut. The roughness trend illustrated in Fig. 2 demonstrates the need to find a balance between achieving 
the desired profile roughness and the occurrence of the loss of cut condition. Overall, the roughness profile 
did not vary in a statistically significant manner between the different sides of the specimen indicating, as 
expected, an independence from this factor. 

 

 
Fig. 2. Profile roughness of the cut profiles for the different sides of the sample specimen (a) side 1, (b) side 2, (c) side 3 and (d) side 4. 
Error bars indicate the standard deviation of the measurement. 

The variation of surface roughness was deemed to be representative of realistic process variations during 
industrial use of laser cutting system and is in agreement with previous observations by Levichev et 
al.(Levichev et al., 2021). Thus, in the following section the process emission images were analysed in order 
to correlate them with the quality of the cut profile. 
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3.2. Feature selection 

Fig. 3 shows representative frames of the process emission images acquired via the coaxial monitoring set 
up during the cutting of the 8 mm thick RAEX mild steel. It clearly appears that the geometrical and intensity 
features vary in the different processing conditions. From a semi-lunar shape visible at v=1100 mm/min the 
acquired process emission moves towards a spherical shaped blob. This variation is consistent with the 
expected process physics, where higher cutting velocities correlate to an increased inclination of the cutting 
front. 

 
Fig. 3. Single frame acquisitions at different cutting velocities corresponding to (a) v=1100 mm/min, high roughness (b) v=1700 mm/min 
mid roughness and (c) v=2300 mm/min low roughness. Dark blue indicates 0 intensity value whilst yellow corresponds to saturated pixel 
at 255. 

As mentioned, the different geometrical features were elaborated and correlated to the corresponding 
roughness measurement via the Pearson’s coefficient; then the number of features has been reduced to five 
by evaluating the redundancy of the most correlated features. 

3.3. Machine Learning model selection 

Following the feature selection, the different ML models indicated in section 2.4. were trained exchanging 
the training and testing datasets in order to verify the redundancy and performance of the same. The results 
in terms of R2, Root Mean Square Error and Mean Average Error are shown in Fig. 5.  
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Fig. 4. Performance of the different ML models with the different combinations of training and testing datasets in terms of (a) R2, (b) Root 
Mean Square Error (RMSE) and (c) Mean Average Error (MAE). Linear Regression in blue, Decision Tree in orange, Random Forest in 
yellow, eXtreme Gradient Boosting in purple and Multi-Layer perceptron in green. 

Overall, observing the results, it is possible to view that none of the trained ML algorithms significantly 
outperformed the others. The R2 value in all cases exceed 70% with values typically in the range of 80% whilst 
the RMSE and MAE were in the range of 10 µm which was deemed to be acceptable for the real-time 
estimation of the profile roughness of the cut components (𝑅𝑅𝑧𝑧  parameter). The Linear Regression model 
certainly guarantees an easier implementation into the machine architecture for the future industrial 
implementation of the Machine Learning approach developed. However, in terms of model performance the 
Multilayer Perceptron algorithm can be indicated as the most performing.  

In Fig. 6, the predictions of the Linear Regression model are shown graphically against the actual values of 
roughness measured. It is possible to observe clearly that although the MAE and RMSE error are within the 
order of 10 µm, the model can effectively predict the quality of the cuts performed and indicate the overall 
trend of the process. This aspect is fundamental in order to provide the industrial users with a clear indication 
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of the process performance. 

 
Fig. 5. Predicted roughness (blue) against measured roughness (orange) as a function of sample number calculated with the LOOCV 
procedure in the case of the Linear Regression model. Dashed lines delimit data from different samples with the relative cutting velocity 
labels at the top of the graph. 

The results obtained indicate that Machine Learning approaches can effectively predict the profile 
roughness during the laser cutting process. The present investigation shows the approach applied for a single 
sheet thickness however the methodological approach developed may be easily applied to feedstock material 
with higher or lower thickness. A fundamental consideration regards the predictability of surfaces with more 
complex surface features. Profile roughness is certainly a valid indicator for the surface quality in oxidation 
cutting however when processing higher thickness materials further indicators may be required when 
processing higher thickness materials in order to take into account the effects of the complex process 
dynamics. 

In the present investigation, roughness variations were induced by varying the cutting speed of the system. 
However, other factors may influence the performance of the laser cutting process and hinder the cutting 
quality. For instance, dirty protective windows may induce focus shifting or variations on the beam energy 
distribution. A relevant research question which remains open is thus the robustness of such approach when 
exposed to non-predictable external influences. 

4. Conclusions 

The current work defines the methodological approach for developing a real-time roughness estimation 
technique during laser oxidation cutting. The monitoring chain effectively captures the process dynamics and 
geometrical features of the melt front. Such information can then be exploited to train Machine Learning 
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algorithms for the real-time prediction of the roughness profile. Statistically significant and independent 
features were selected for the training and testing of the various Machine Learning algorithms. The results 
obtained indicate that different ML algorithms may be employed and present similar performances. Overall, 
the prediction capability for the roughness parameter 𝑅𝑅𝑧𝑧 of the developed architecture achieves an R2 fitting 
value above 80% with a Mean Average Error below 10 µm. The monitoring chain and the real-time estimation 
approach lay the foundation for active control of the process that will be explored in future works. 
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