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Abstract 

In secondary batteries and fuel cells for electric vehicles, connection between electrodes is inevitable. Achieving consistent 
weld quality and weld joint properties is critical for reliable battery assembly and electric vehicle performance. Laser 
welding is sensitive to joint preparation, which secures the electrodes with a jig system, but can create unexpected gaps 
between the layers. The spacing between the layers provides a path for laser beam dispersion and creates a loose 
interface. Typically, these electrodes are connected by full-overlap joints, making it difficult to find interfacial gaps during 
the process. In this study, laser welding was performed the on specimen with overlap joint for Al (top, 0.4 mm)/Cu (bottom, 
1.0 mm) with an artificial gap. We proposed two types of convolution neural network (CNN) models to detect gap presence 
using single-sensor and multi-sensor data. To develop the deep learning model (a fully connected neural network model 
and a convolutional neural network model), CCD camera, OCT, and photodiode sensor were selected to monitor the weld 
pool feature, keyhole depth and plasma wavelength, respectively. Test results showed quite good classification 
performance with over 98% accuracy using a multiple sensor. Multi-sensor CNNs by consolidated image data have 
improved accuracy compared to those using only image data. 
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1. Introduction 

Aluminum and copper are the key materials as the electrode, and these are connected electrically to 
enlarge the battery capacity and manage the battery system [1]. Recently laser welding process are preferred 
to acquire the electrical joint [1-3] due to it utilizes the high-density energy via the focused laser beam. I 
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allowed high welding speed with a reliable joint quality. Brand et al. [4] compared the joint performance 
fabricated with resistance spot welding, ultrasonic welding, and laser welding. They concluded that laser 
welding has the lowest electrical contact resistance and the highest joint strength compared with other joining 
processes [4]. 

The sheets used for electrodes and tabs are very thin, the gap preparation is affected to the joint quality. 
Especially, the gap between the layers can cause the defects such as underfill, pores, humping, and weak 
interface. With the recent advance of machine learning technology, the application of deep learning 
technology is abruptly increasing in sensing and monitoring of welding phenomena [5]. Especially, CNN 
(convolution neural network)-based models have been extensively developed in welding research [6,7]. The 
recent CNN model has strength in modelling based on continuous signals or images, whereas the MLP 
(multilayer perceptron) neural network model has been widely adopted for parameter-based modelling [8]. 

In this experiment, OCT, spectrometer and CCD camera have been employed to analyze the keyhole depth, 
wavelength variation of plasma plume, and molten pool feature, respectively. A deep learning mode was 
developed to classify the gap presence in laser welded Al-Cu overlap joints. Convolution neural networks were 
chosen as the deep learning models, and CNN models using single or multi sensor signals were trained and 
tested. 

2. Experiment and methodologies 

2.1. Experimental setup 

A fiber laser (IPG, YLS-6000) was used for laser welding, the beam was delivered through an optic (IPF, D30) 
with a focal length of 200 mm. The beam was irradiated with a declined angle of 10° to avoid reflection error. 
At the focal point, the laser beam had a diameter of 270 μm. The base materials were selected as Al 1050 
(Thickness: 0.4 mm) and C1100 (thickness: 1.0 mm) to imitate tab and bus bar welding. An artificial interfacial 
gap between the layers were varied from 0 to 0.1 mm, which was managed using feeler gauges. During the 
welding, shielding gases were not provided. Table 1 and Table 2 show the chemical composition of the base 
materials and parameters used in this study. 

To enable real-time monitoring of the welding phenomenon, sensors were installed coaxially to the laser 
head, as shown in Fig. 1. A CCD camera (IDS, UI-6140CP-M-GL) was used to collect image data with a size of 
472 × 202 pixels at 500 frames per second. To minimize the effect of laser-induced plasma and plume, the 
welding area was directly illuminated with an illumination laser beam with a wavelength of 980 nm. A 
spectrometer (Ocean Insight, HR4000) was used to collect 3648 wavelength signals in the 194 – 1127 nm 
wavelength band at 100 Hz. Optical coherence tomography, named as OCT (IPG, LDD-700), was used to collect 
keyhole depth measurement data at about 135 kHz by irradiating a near-infrared laser with a wavelength of 
808 nm. 

Table 1. Chemical composition of base materials (wt.%) 

 
 Al Si Fe Cu Mn Mg Zn Ti V 

Al 1050 99.59 0.068 0.286 0.003 0.001 0.001 0.002 0.023 0.016 
C1100 - - - 99.959 - - - - - 

 

 



 LiM 2023 - 3 

Table 2. Experimental conditions for laser welding. 

Parameter (unit) Value (Level) 
Laser power (kW) 1.5, 1.25, 1.0 (3) 

Welding speed (m/min) 5 (1) 
Gap (mm) 0, 0.02, 0.04, 0.06, 0.08, 0.1 (6) 

Number of replicates 2 

 

  
(a) (b) 

Fig. 1. (a) coaxially arranged sensors image and (b) joint configuration  
 

2.2. Gap measurement 

To demonstrate the interfacial gap, which is the target parameter for prediction, average gap distance at 
interface were measured from the laser welded samples. The measuring points were chosen within a 60 mm 
where a 50 mm away from the welding start position. The interfacial gap was defined as the average value 
measured from cross-sectional images at 20 mm intervals. When the average Gap was over 0.04 mm, which 
is 10% of the top sheet, it was treated as a gap condition.   

2.3. Data preprocessing 

A model was developed to estimate in real time using image data as the original data at a frequency of 500 
Hz. For the spectrometer and OCT data, pre-processing was carried out using up-sampling and down-sampling 
methods in the time domain, respectively. Following the pre-processing steps, the frequency of the input data 
from all three sensors was unified to 500 Hz. 

2.4. Convolutional neural network 

The deep learning models used to detect the interfacial gap in the Al/Cu overlap welding are developed. 
The CNN layer for the CCD images was designed to extract the features through the molten pool images, and 
the spectrometer data within 3648 wavelengths also driven through the CNN model. In the case of OCT data, 
one-dimensional time domain data, it was used as a single value without performing a convolution. Optimized 
structure of the CNN model used in experiment were given in Table 3. Batch normalization was used between 
convolutional layers to improve stability and performance, and feature maps were down-sampled using max 
pooling. The activation function used in all the nodes except the output nodes was the rectified linear unit 
(ReLU) function. After the extracting the features from the CCD images, spectrometer signals, and OCT data 
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through the CNN layers, two of fully-connected layers were added. In order to prevent overfitting, a kernel 
regularizer was applied to each dense layer. For the classification, the activation function used in all the nodes 
was the Sigmoid function, and the Adam optimizer [9] was employed with the following parameters: a learning 
rate of 10-3, β1=0.9, β2=0.999, and ε=10-8. The data points were randomly split into training, validation, and 
test datasets in a ratio of 70%:15%:15%.   

Table 3. Architecture of the convolutional neural network. 

Layer Filter Size Number of filters  Max Pooling Filter Size Number of filters  Max Pooling  

Input Grayscale images 3648 wavelength spectrum Keyhole depth 

Convolution 3 × 3 32 3 × 3 3 32 3  

Convolution 3 × 3 64 3 × 3 3 64 3  

concatenate 3 input flatten and concatenate 

Fully connected 512 output channels 

Fully connected 256 output channels 

Fully connected 1 output for classification 

 

3.  Results and discussion 

The trained model achieved a classification accuracy of 99.98% on the training dataset, and 99.12% on the 
validation dataset, it indicated that the CNN model is capable of classifying samples with high accuracy. The 
accuracy of the test dataset was 98.88% (Fig. 2). This high accuracy on the test dataset means that the trained 
model is reliable and can be applied effectively to predict the interfacial gap in real welding situation.  
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Fig. 2. Training and validation (a) loss and (b) accuracy, and (c) test results for the multi-sensor (CCD + spectrometer + LDD) model. 

The accuracy, number of false positive, and precision were presented to compare the deep learning models 
according to the combination of sensors, as shown in Fig. 3. In the deep learning model using a single sensor, 
the CNN models using the spectrometer signals and CCD images accomplished a high accuracy of over 98%, 
while the OCT sensor model showed an accuracy of 66.08%. Under multi-sensor integration conditions, the 
accuracy and precision were slightly increased and numbers of false positive precision was decreased. The 
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multi-sensor model achieved a high precision rate of 99.7%. In the dual-sensor combinations, the CCD and 
spectrometer combination was reliable and performed well alone. FP determined the feasibility of the model 
for predicting gaps. The multi-sensor model (CCD + SP + OCT) has the lowest number of FPs. It means that 
multi-sensor model is excellent for predicting a gap. 
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Fig. 3. Confusion matrix plot according to the sensor combination (a) Accuracy; (b) precision; (c) number of false positive 

4. Conclusions 

This study proposes the possibility of machine learning application for real-time monitoring and detection 
of interfacial gap using various sensors. The CCD images, spectrometer signal, and OCT data collected during 
the Al/Cu overlap laser welding were used to establish a CNN-based algorithm. The accuracy and precision of 
the algorithms were compared and presented according to the combinations of sensors. As a result of the 
single sensor learning model, the CCD and the spectrometer play a major role among the three sensors with 
over 97% accuracy. When sensing data is merged into the deep learning model, the accuracy and precision 
were increased by synergistic effect.  

 



 LiM 2023 - 6 

Acknowledgements 

We acknowledge financial and technical support provided by the Korea Institute of Industrial Technology 
(EH-23-070).  

References 

1.  Lee, S.S., Kim, T.H., Hu, S.J., Cai, W.W. & Abell, J.A., 2010. Joining technologies for automotive lithium-ion battery manufacturing: A 
review, in Proceedings of ASME 2010 international manufacturing science and engineering conference, Erie, PA, USA, 541-549. 

2. Cai, W.W. 2017., Ultrasonic welding of lithium-ion batteries, in ASME Press 
3. Das, A., Li, D., Williams, D. & Greenwood, D. 2018., Joining technologies for automotive battery systems manufacturing, World 

Electric Vehicle Journal 9, 22. 
4. Brand, M.J., Schmidt, P.A., Zaeh, M.F. & Jossen, A., 2015, Welding techniques for battery cells and resulting electrical contact 

resistances, Journal of Energy Storage 1, 7-14 
5.  Cai, W., Wang, J., Jiang, P., Cao, L., Mi, G. & Zhou, Q., 2020, Application of sensing techniques and artificial intelligence-based 

methods to laser welding real-time monitoring: A critical review of recent literature, Journal of Manufacturing Systems 57, 1-18. 
6. Lee, K.,Yi, S.,Hyun, S. & Kim, C., 2021, Review on the recent welding research with application of CNN-based deep learning -  Part 1: 

models and applications, Journal of Welding and Joining 39, 27-35. 
7. Lee, K.,Yi, S.,Hyun, S. & Kim, C., 2021, Review on the recent welding research with application of CNN-based deep learning -   Part 

II: model evaluation and visualizations, Journal of Welding and Joining 39, 36-44. 
8. Andersen, K., Cook, G.E., Karsai, G. & Ramaswamy, K., 1990, Artificial neural networks applied to arc welding process modeling and 

control, IEEE Transactions on Industry Applications 26, 824-830. 
9. Schmalen P., Plapper, P., 2018, Spectroscopic studies of dissimilar Al-Cu laser welding, International Manufacturing Science and 

Engineering Conference, American Society of Mechanical Engineers, p. V002T04A033. 
 


