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Abstract 

Diffractive neural networks are a design method for cascading diffractive optical elements or spatial light modulators that 
is based on neural network training techniques. In previous work, we have shown that these systems can be used for 
complex beam shaping tasks like combined beam splitting and shaping, high depth-of-focus through simultaneous 
optimization of amplitude and phase and the shaping of multiple target planes for effective 3D profiles. Additionally, 
alignment errors can be addressed and compensated during training and other optical elements like lenses can be included 
into training without effort. 
Here, we present the method, advantages compared to other beam shaping techniques and applications in laser materials 
processing like for example in surface treatment. 
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1. Introduction 

In laser materials processing, the intensity distribution of the laser beam on the work piece significantly 
affects the quality and productivity of the processes (Annika Völl et al. 2018). Apart from the conventional 
Gaussian beam profile, alternative intensity distributions such as uniform top-hat distributions, donut shapes, 
or other complex distributions are chosen. Achieving these specific distributions necessitates the utilization of 
advanced beam shaping methods, including systems comprised of spherical and aspherical lenses and mirrors, 
freeform optics, diffractive optical elements (DOEs), or spatial light modulators (SLMs) like Liquid Crystal on 
Silicon (LCOS-SLM) (Fred M. Dickey et al. 2000). 

Although these methods offer excellent beam shaping capabilities in a two-dimensional target plane, their 
effectiveness is limited beyond this single plane. Especially when working with transparent materials or non-
planar surfaces, shaping the intensity distribution in a three-dimensional space can be advantageous or even 
necessary. In previous works, great results have been made with Bessel-like beams (Daniel Flamm et al. 2019) 
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or using two phase masks where the second phase masks corrects the phase of a field using analytical solutions 
for the mask design (Lisa Ackermann et al. 2021). Recently, we have proposed Diffractive Neural Networks 
(DNNs) as a versatile tool for realizing three-dimensional beam shaping (Paul Buske et al. 2022). DNNs 
represent a physical implementation of artificial neural networks that employ light as the information, while 
phase masks serve as the network’s layers. Each pixel within each layer, i.e. in each phase mask, functions as 
a neuron in this network which is connected to the neurons in each previous and subsequent layer through 
optical propagation. DNNs can be trained in a computer to accomplish specific tasks and after training, the 
calculated diffractive layers can be realized with phase masks. Originally motivated for enabling image 
processing at the speed of light (Xing Lin et al. 2018), DNNs can also be utilized for laser beam shaping. Our 
design algorithm for the DNNs offers several advantageous features for beam shaping: 
• Shaping of both amplitude and phase: The phase of the field can be adjusted as an additional optimization 

objective for e.g. increased depth-of-focus. 
• Multiple simultaneous target planes: By optimizing not only for one target plane but for multiple planes, 

effective three-dimensional beam shaping becomes achievable. 
• Robustness against misalignment: As initially outlined in (Jiashuo Shi et al. 2021), the training can be 

performed by incorporating variations of the input beam, such as lateral shifts or deviations in beam 
radius. Consequently, the calculated optical system automatically becomes robust against these 
deviations. Alignment errors of the phase masks can also be addressed as described in (Deniz Mengu et al. 
2020) for image processing DNNs. 

 
Furthermore, other optical components like lenses or mirrors can be included in the training process as static 
elements. This is very convenient for small target distributions, as e.g. lenses help reduce the necessary 
refractive power of the phase masks for simplifying fabrication. Additionally, since the used AI training 
algorithms natively use GPUs, training of a DNN for beam shaping only takes a few minutes. In the following, 
we show experimental results of DNNs based on SLMs and we outline two approaches for enabling three-
dimensional beam shaping for laser materials processing. 

2. Results 

2.1. Example experiments 

DNNs can be realized by various kinds of phase mask, like DOEs, SLMs or meta-optics. While each 
implementation has its advantages and disadvantages, we employed SLMs using Liquid Crystal on Silicon 
(LCoS) for demonstrating the results (Maxson et al. 2014). This is convenient because they can be addressed 
dynamically and used for various DNN configurations in the same setup. For a high-power application with 
static beam shaping the LCoS can be replaced with DOEs. Our setup uses a 50 µW, 633 nm HeNe laser that is 
linearly polarized as required for the SLMs. We use up to two cascaded Hamamatsu SLMs of the type 
X15213-13 with 1024 x 1272 controllable pixels and a pixel pitch of 12.5 µm.  

We present an example for experimental beam shaping using one SLM in 250 mm distance and two SLMs 
including phase optimization with 250 mm distance between the SLMs (Figure 1). Both setups perform their 
respective task with high accuracy, with the intensity distributions of the two-layer network being slightly less 
sharp but more homogeneous. Additionally, as for the two-layer network the phase is designed to be constant 
in the target plane, the effective depth-of-focus is increased.  The results demonstrate that our approach is 
not only theoretically viable but also experimentally. 
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2.2. Applications in laser materials processing 

We show two examples on how a two-layer DNN is used in two different ways for increasing the depth-of-
focus in laser materials processing. Both examples are simulated assuming a 1064 nm laser as input beam. 
Each layer could be experimentally implemented with an SLM that has at least 1024 x 1272 pixels with a pixel 
pitch of 12.5 µm and can be applied for the chosen wavelength. The beam diameter of the Gaussian input 
beam is set to 5.3 mm. In the training examples with two layers, the layers are separated by 250 mm. 

 The armchair intensity distribution (Figure 2 ) can be used to achieve a homogeneous temperature profile 
in the laser hardening process  (Annika Völl et al. 2018). This intensity distribution exhibits an edge length of 3 
mm. As it is a quite large and smooth distribution, it can be considered effectively collimated in the target 
plane when the phase remains constant. We train a two-layer DNN to achieve this armchair distribution with 
constant phase at 200 mm measured from the second SLM. The result is compared to a single SLM that is 
trained without phase optimization for the same target distance to show the difference in the depth-of-focus.  

The simulated intensity distributions of both configurations and varying distances are depicted in Figure 3. 

In the top row the “conventional” result of a single SLM is shown, while in the bottom row the two-layer DNN 
is shown. While for both configurations the target intensity distribution is obtained at the target distance, it is 
obvious that the two-layer DNN approximates the desired intensity distribution also both 20 mm before and 
after the target plane. This could be used in a hardening process of a surface with different height levels 
without needing to reposition the laser. 

 

Fig. 1. Example experimental results for DNNs with both a single-layer and a two-layer network. 

 Figure 2: Armchair intensity distribution, which serves as the target distribution for the optimization. 
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As a second example, a square top-hat distribution with an edge length of 100 µm is investigated. This 
distribution is too small to fully benefit from phase optimization as it would diffract too much when 
propagating away from the target plane. Instead, we set five different target planes in distance steps of 1 mm 
that all shall achieve the same intensity distribution. The distance between planes must be chosen small 
enough to ensure that the beam does not change its shape between the planes. A higher density of planes 
results in more reliable training results but also increases the computational cost. In this example we did not 
limit the setup to two SLMs but also included an ideal focusing lens with f = 200 mm behind the second SLM 
in the training to reduce the refractive power otherwise needed from the SLMs. As the center target plane, 
we choose the focal plane of this lens. The simulated intensity distributions in various distances are shown in 
Figure 4: In the top row, the results of a single SLM without multiple target planes are shown, in the bottom 
row the corresponding results for a two-layer network with five target planes are depicted. The five shown 
planes are also the respective planes that were optimized for. While in the focal plane itself, the top-hat 
distribution is created more accurately in the single SLM setup, in all other distances the two-layer network 

Figure 3: Comparison of depth-of-focus for large target distributions: Top: Single SLM with one target plane. Bottom: 
Two SLMs with one target plane and constant phase optimization. 

Figure 4: Comparison of depth-of-focus for small target distributions: Top: Single SLM with one target plane. Bottom: Two SLMs with five 
target planes. 
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preserves the shape more clearly. This demonstrates that even for small intensity distributions, DNNs can 
increase the effective depth-of-focus.  

3. Summary and Outlook 

In summary, DNNs are a valuable concept for application-adapted beam shaping in laser materials 
processing. They can be used not only for arbitrary phase mask design with single phase masks but also for 
cascading phase masks enabling advanced features like a higher depth-of-focus for small and large intensity 
distributions. We have presented theoretical results and the experimental demonstration of one- and two-
layer networks with spatial light modulators. In the next steps, we perform an experimental tolerancing 
analysis for different alignment parameters and increase the robustness against the variations in the training 
procedure. We also develop an ultra-short pulse laser processing machine including multiple SLMs and 
monitoring systems all controlled with a microservice architecture. This setup allows for adaptive beam 
shaping by utilizing an intelligent digital twin of the complex optical system, which employs the presented DNN 
design method to compute phase masks on demand. 
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